Pacific Journal of Mathematics

Some remarks on $p$-rings and their Boolean geometry.

Joseph L. Zemmer

Article information

Source
Pacific J. Math., Volume 6, Number 1 (1956), 193-208.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103044254

Mathematical Reviews number (MathSciNet)
MR0079577

Zentralblatt MATH identifier
0072.02504

Subjects
Primary: 09.3X

Citation

Zemmer, Joseph L. Some remarks on $p$-rings and their Boolean geometry. Pacific J. Math. 6 (1956), no. 1, 193--208. https://projecteuclid.org/euclid.pjm/1103044254


Export citation

References

  • [1] L. M. Biumenthal, Boolean geometry I, Rend. Circ. Mat. Palermo, Series 2, 1 (1952), 1-18.
  • [2] L. M. Biumenthal, Theory and applications of distance geometry, The Clarendon Press. Oxford, 1953.
  • [3] David Ellis, AutometrizedBoolean algebras I, Canadian J. Math., 3 (1951), 87-93.
  • [4] David Ellis, AutometrizedBoolean algebras II, Canadian J. Math., 3 (1951), 145-147.
  • [5] L. Foster, p-rings and their Boolean-vector representation,cta Math., 84 (1951), 231-261.
  • [6] Nathan Jacobson, Lectures in abstract algebra, Vol. I, Basic concepts, van Nostrand, New York, 1951.
  • [7] N. H. McCoy and D. Montgomery, A representationof generalizedBooleanrings, Duke Math. J., 3 (1937), 455-459.
  • [8] N. H. McCoy, Rings and ideals, The Carus Mathematical Monographs, no. 8, The Mathematical Association of America, 1948.
  • [9] John von Neumann, On regular rings, Proc. Nat. Acad. Sci. U.S.A., 22 (1936), 707-713.
  • [10] M. H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc, 40 (1936), 37-111.
  • [11] M. H. Stone, Applicationsof the theory of Boolean rings to general topology, Trans. Amer. Math. Soc, 41 (1937), 375-481.