Pacific Journal of Mathematics

An intrinsic inequality for Lebesgue area.

E. Silverman

Article information

Source
Pacific J. Math., Volume 6, Number 2 (1956), 363-372.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103044135

Mathematical Reviews number (MathSciNet)
MR0080138

Zentralblatt MATH identifier
0073.04402

Subjects
Primary: 28.0X

Citation

Silverman, E. An intrinsic inequality for Lebesgue area. Pacific J. Math. 6 (1956), no. 2, 363--372. https://projecteuclid.org/euclid.pjm/1103044135


Export citation

References

  • [1] S. Banach, Theor des operations lineaires, Warsaw, 1932.
  • [2] A. S. Besicovitch, On two problems of Loewner, J. London Math. Soc, 27 (1952), 141-144.
  • [3] H. Busemann, Intrinsic areas, Ann. of Math., 48 (1947), 234-267.
  • [4] L. Cesari, Frechct surfaces of finite Lebesgue area in E7, Abstract 604, Bull. Amer. Math. Soc, 59 (1953), 534. 5> fSui fondamenti geometrici delVintegrale classtco per area delle superficie in formaparamerica,Atti della R. Accadeinia d'talia, 13 (1943), 1323-1481.
  • [6] H. Federer, Surface area II, Trans. Amer. Math. Soc, 55 (1914), 438-456.
  • [7] H. Federer,Essential multiplicityand Lebesgue area, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 611-616.
  • [8] H. Federer, On Lebesgue area, Ann. of Math., 61 (1955), 289-353.
  • [9] T. Rado, Length, and area, Colloquium Publications Amer. Math. Soc, 30, New York, 1948.
  • [10] T. Rado and P. V. Reichelderfer, A theory of absolutely continuoustransformations in the plane, Trans. Amer. Math. Soc, 49 (1941), 258-307.
  • [11] E. Silvermau, Definitions of Lebesgue area for surfaces in metric spaces, Riv. Mat. Univ. Parma, 2 (1951), 47-76.
  • [12] E. Silvermau, An intrinsic properly of Lebesgue area, Riv. Mat. Univ. Parma, 2 (1951), 195-201.