Pacific Journal of Mathematics

A relation between perfect separability, completeness, and normality in semi-metric spaces.

Louis F. McAuley

Article information

Source
Pacific J. Math., Volume 6, Number 2 (1956), 315-326.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103044132

Mathematical Reviews number (MathSciNet)
MR0080907

Zentralblatt MATH identifier
0072.17802

Subjects
Primary: 54.0X

Citation

McAuley, Louis F. A relation between perfect separability, completeness, and normality in semi-metric spaces. Pacific J. Math. 6 (1956), no. 2, 315--326. https://projecteuclid.org/euclid.pjm/1103044132


Export citation

References

  • [1] R. H. Bing, Metrizationof topological spaces, Canad. J. Math., 3 (1951), 175-186.
  • [2] E. W. Chittenden, On the metrization problem and related problems in the theory of abstract sets, Bull. Amer. Math. Soc, 33 (1927), 13-34. 7The terms " point" and " region" are undefined. Axiom 0 states that every region is a point set.
  • [3] Mary E. Estill, Concerningabstractspaces, Duke Math. J., 17 (1950), 320.
  • [4] M. Frechet, Espacesabstracts,Paris, 1928.
  • [5] F. B. Jones, Concerning normal and completely normal spaces, Bull. mer. Math. Soc, 43 (1937), 671-677.
  • [6] Ernest Michael, A note on paracompactspaces, Proc. Amer. Math. Soc, 4 (1953), 831-838.
  • [7] R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloquium Publi- cations, 13, New York, 1932.
  • [8] R. L. Moore, A set of axioms for plane analysis situs, Fund. Math. 25 (1935), 13-28.
  • [9] W. Sierpinski, General topology, trans. C. Cecilia Krieger, University of Toronto Press, 1952.
  • [10] A. H. Stone, Paracompactnessand product spaces, Bull. Amer. Math. Soc, 54 (1948), 977-982.
  • [11] C. W. Vickery, On spaces {E) and Moore spaces, Bull. Amer. Math. Soc, 46 (1940), 433.
  • [12] G*. T. Whyburn, Analytic topology, Amer. Math Soc Colloquium Publications, 28, New York, 1942.
  • [13] G*. T. Whyburn, The Boulder colloquium, Bull. Amer. Math. Soc , 35 (1929), 775-777.
  • [14] W. A. Wilson, On semi-metric spaces, Amer. Jour, of Math., 53 (1931), 361-373.