Pacific Journal of Mathematics

Minimal domains and their Bergman kernel function.

Michael Maschler

Article information

Source
Pacific J. Math., Volume 6, Number 3 (1956), 501-516.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103043967

Mathematical Reviews number (MathSciNet)
MR0081951

Zentralblatt MATH identifier
0072.29902

Subjects
Primary: 30.0X

Citation

Maschler, Michael. Minimal domains and their Bergman kernel function. Pacific J. Math. 6 (1956), no. 3, 501--516. https://projecteuclid.org/euclid.pjm/1103043967


Export citation

References

  • [1] S. Bergman, Sur les functionsorthogonales de plusieursvariables complexes avec les applicationsa la theorie des fonctions analytiques,Intersc. Pub. 1941, and Mem. des Sc. Math., 106, Paris, 1947.
  • [2] S. Bergman, Surla fonction-noyaud'undomaine e ses applications dans la theorie des transformationspseudo-conformes, Mem. des Sc. Math., 1O8, Paris, 1948.
  • [3] S. Bergman,The kernel functionand conformal mapping, Amer. Math. So, New York, 1950.
  • [4] S. Bergman,Ueber die Kernfunktion gewisser ReinhardtscherKreiskrper,Rev. Math. de Union Interbalcanique, 2 (1939), 41-43.
  • [5] P. R. Garabedian, A new formalism for functionsof several complex variables,J. Analyse Math., 1 (1951), 59-80.
  • [6] P. Kufareff, Ueber das zweifachzusammenhngendeMinimalgcbiet, Bull. Inst. Math, et Mec, Univ. de Tomsk, 1 (1935-1937), 228-236.
  • [7] M. Schiffer, Sur les domaines minima dans la theorie des transformationspseudo- conformes, C. R. Acad. Sci. Paris, 207 (1938), 112-115.
  • [8] G. Springer, Pseudo-conformal transformationsonto circular domains, Duke Math. J., 18 (1951), 411-424.
  • [9] J. Stark, On distortion in pseudo-conformal mapping, Pacific J. Math., 6 (1956), 565- 582.