Pacific Journal of Mathematics

A composite Newton-Raphson gradient method for the solution of systems of equations.

William L. Hart and Theodore S. Motzkin

Article information

Source
Pacific J. Math., Volume 6, Number 4 (1956), 691-707.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103043796

Mathematical Reviews number (MathSciNet)
MR0086384

Zentralblatt MATH identifier
0072.14202

Subjects
Primary: 65.3X

Citation

Hart, William L.; Motzkin, Theodore S. A composite Newton-Raphson gradient method for the solution of systems of equations. Pacific J. Math. 6 (1956), no. 4, 691--707. https://projecteuclid.org/euclid.pjm/1103043796


Export citation

References

  • [1] Herman Chernoff and Jean Bronfenbrenner Crockett, Gradient methods ofmaximiza- tion, Pacific J. Math., 5 (1955), 33-50.
  • [2] George E. Forsythe, Solving linear equations can be interesting,Bull. Amer. Math. Soc, 59 (1953), 299-329.
  • [3] Lawrence M. Graves, The theory of functionsof real variables, McGraw Hill, 1946.
  • [4] Theodore S. Motzkin and C. B. Tompkins, Boundednessof sequentialprojections (abstract), Bull. Amer. Math. Soc, 59 (1953), 396.
  • [5] Alexandre Ostrowski, Un Theoreme a"existence pour les systemes d*equations, C. R. Acad. Paris, 231 (1950), 1114-1116.
  • [6] C. B. Tompkins, Projection methods in calculation, Proceedings of the Second Sym- posium in Linear Programming, Washington D. C, 2 (1955), 425-448.