Pacific Journal of Mathematics

The representation of an analytic function by general Laguerre series.

Otto Szász and Nelson Yeardley

Article information

Source
Pacific J. Math., Volume 8, Number 3 (1958), 621-633.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103039904

Mathematical Reviews number (MathSciNet)
MR0101441

Zentralblatt MATH identifier
0096.05102

Subjects
Primary: 41.00

Citation

Szász, Otto; Yeardley, Nelson. The representation of an analytic function by general Laguerre series. Pacific J. Math. 8 (1958), no. 3, 621--633. https://projecteuclid.org/euclid.pjm/1103039904


Export citation

References

  • [1] Evelyn Boyd, On Laguerreseries in the complex domain,Dissertation 1949, Yale University.
  • [2] W. B. Caton and E. Hille, Laguerre polynomials and Laplace integrals, Duke Math, J. 12 (1945), 217-242,
  • [3] E. Hille, Contributions to the theory of Hermitianseries, Duke Math. J., 5 (1939), 875-936. 4^^ Contributions to the theory of Hermitianseries, II.The representation problem, Trans. Amer. Math. Soc, 47 (1940) 80-94.
  • [5] K. Knopp, The theory of functions,Dover. Vol. I, (1945).
  • [6] O. Perron, Tiber das Verhalteneiner ausgearteten hypergeometrischenReihe bei unbegrentztem Wachstum eines Parameters, J. Reine Angew. Math. 151 (1921), 63-78.
  • [7] H. Pollard, Representation of an analytic functionby a Laguerre series, Ann. of Math. 48 (series 2) (1947), 358-365.
  • [8] G. Szego, Orthogonal polynomials, Amer, Math. Soc. Colloq. Publ. XXIII (1939).
  • [9] E. C. Titchmarsh, The theory of functions, Oxford. Second edition, 1939.
  • [10] G. Watson, A treatise on the theory of Bessel functions, Cambridge. Second edition, 1944.
  • [11] S. Wigert, Contributions a la theorie des polynomes d}Abel-Laguerre, Ark. Math.
  • [12] A. Zygmund, Trigonometrical series, Warsaw (1935).