Pacific Journal of Mathematics

Faithful $^{\ast}$-representations of normed algebras.

Bertram Yood

Article information

Source
Pacific J. Math., Volume 10, Number 1 (1960), 345-363.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103038646

Mathematical Reviews number (MathSciNet)
MR0110958

Zentralblatt MATH identifier
0094.09603

Subjects
Primary: 46.00

Citation

Yood, Bertram. Faithful $^{\ast}$-representations of normed algebras. Pacific J. Math. 10 (1960), no. 1, 345--363. https://projecteuclid.org/euclid.pjm/1103038646


Export citation

References

  • [1] R. Arens, Representations of *-algebras, Duke Math. J. 14 (1947), 269-282.
  • [2] B. H. Arnold, Rings of operators on vector spaces, Ann. of Math. 45 (1944), 24-49.
  • [3] F. F. Bonsall and A. W. Goldie, Annihilatoralgebras, Proc. London Math. Soc. 14 (1954), 154-167.
  • [4] P. Civin and B. Yood, Involutionson Banach algebras, Pacific J. Math., 9 (1959), 415- 436.
  • [5] N. Jacobson, Structureof rings, Amer. Math. Soc. Colloq. Publ. vol. 37, Providence, 1956.
  • [6] S. Kakutani and G. W. Mackey, Two characterizationsof real Hilbert space, Ann. of Math. 45 (1944), 50-58.
  • [7] S. Kakutani and G. W. Mackey, Ring and lattice characterization of complexHilbert space, Bull. Amer. Math. Soc. 52 (1946), 727-733.
  • [8] I. Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399-418.
  • [9] I. Kaplansky, Topological algebra, Department of Mathematics,University of Chicago, 1952, mimeographed notes.
  • [10] J. L. Kelley and R. L. Vaught, The positive cone in Banach algebras, Trans. Amer. Math. Soc. 74 (1953), 44-55.
  • [11] V. L. Klee, Jr., Convex sets in linear spaces, Duke Math. J. 18 (1951), 443-466.
  • [12] L. H. Loomis, An introductionto abstract harmonic analysis, D. Van Nostrand Co., New York, 1953.
  • [13] M. A. Naimark, nvolutiveAlgebren, Sowjetische Arbeiten zur Funktionalysis, Berlin (1954), 89-196.
  • [14] M. A. Naimark, Normed rings, Moscow, 1956. (Russian).
  • [15] J. D. Newburgh, The variation of spectra, Duke. Math. J. 18 (1951), 165-177.
  • [16] C. E. Rickart, The uniqueness of norm problem in Banach algebras, Ann. of Math. 51 (1950), 615-628.
  • [17] C. E. Rickart,Representationsof certain Banach algebras on Hilbert space. Duke Math. J. 18 (1951), 27-39.
  • [18] B. Yood, Topological properties of homomorphismsbetween Banach algebras, Amer. J. Math. 76 (1954), 155-167.

See also

  • II : Bertram Yood. Faithful ${}^\ast$-representations of normed algebras. II. Pacific Journal of Mathematics volume 14, issue 4, (1964), pp. 1475-1487.