Pacific Journal of Mathematics

Homomorphisms of certain algebras of measures.

Irving Glicksberg

Article information

Source
Pacific J. Math., Volume 10, Number 1 (1960), 167-191.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103038633

Mathematical Reviews number (MathSciNet)
MR0139022

Zentralblatt MATH identifier
0104.33805

Subjects
Primary: 46.80
Secondary: 42.56

Citation

Glicksberg, Irving. Homomorphisms of certain algebras of measures. Pacific J. Math. 10 (1960), no. 1, 167--191. https://projecteuclid.org/euclid.pjm/1103038633


Export citation

References

  • [1] R. Arens and I. M. Singer, Generalized analytic functions,Trans. Amer. Math. Soc. 81 (1956), 379-393
  • [2] R. Arens, A Banach algebra generalization of conformal mappings on the unit disc, Trans. Amer. Math. Soc, 81 (1956), 501-513.
  • [3] A. Beurling and H. Helson, Fourier-Stieltjestransformswith bounded powers, Math. Scand. 1 (1953), 120-126.
  • [4] W. F. Eberlein, Characterizations of Fourier-Stieltjestransforms, Duke Math. J. 22 (1955), 465-468.
  • [5] B. Gelbaum, G. Kalish, and J.M.H. Olmstead, On the imbedding of topological semi- groups and integral domains, Proc. Amer. Math. Soc. 2 (1951), 807-821,
  • [6] I. Glicksberg, Convolution semigroups of measures, Pacific J. Math. 9 (1959), 51-67.
  • [7] H. Helson, Isomorphismsof abelian group algebras, Arkiv for Mat. 2 (1953), 475-487.
  • [8] J. P. Kahane, Sur less fonctions sommes des series trigonometriques absolument con- vergentes, Comptes Rendues 240 (1955), 36-37.
  • [9] Z. L. Leibenson, On the ring of functions with absolutely convergent Fourier series, Uspehi Matem. Nauk N.S. 9 (1954), 157-162.
  • [10] L. Loomis, An Introduction to Abstract Harmonic Analysis, New York, 1953.
  • [11] K. Numakura, On bicompact semigroups,Math. J. of Okayama University, 1 (1952), 99-108.
  • [12] W. Rudin, The automorphisms and endomorphisms of the group algebra of the unit circle, Acta Math. 95 (1956), 39-55.
  • [13] G. E. Silov, On the decomposition of a commutative normed ring into a direct sum of ideals, Translations of the A.M.S., series 2, vol. 1, pp. 37-48.
  • [14] Yu. A. Sreider, The structure of maximal ideals in rings of measures with convolu- tion, Mat. Sbornik N. S. 27 (69) (1950), 279-318; Amer. Math. Soc. Translation No.81.
  • [15] A. Weil, UIntegrationdans les Groupes Topologiques et ses Applications, Actualites Scientifiques et Industrielles, no. 369, Paris, 194.
  • [16] J. G. Wendel, On isometric isomorphisms of group algebras. Pacific J. Math. 1 (1951), 305-311.
  • [17] J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952) 251-261.