Pacific Journal of Mathematics

On uniqueness questions for hyperbolic differential equations.

John P. Shanahan

Article information

Source
Pacific J. Math., Volume 10, Number 2 (1960), 677-688.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103038422

Mathematical Reviews number (MathSciNet)
MR0116129

Zentralblatt MATH identifier
0098.29502

Subjects
Primary: 35.00

Citation

Shanahan, John P. On uniqueness questions for hyperbolic differential equations. Pacific J. Math. 10 (1960), no. 2, 677--688. https://projecteuclid.org/euclid.pjm/1103038422


Export citation

References

  • [1] E. A. Coddington and N. Levinson, Uniqueness and the convergence of successive ap- proximations, J. Indian Math. Soc,. 16 (1952), 75-81.
  • [2] F. Guglielmino, Sulla risoluzione del problema de Darboux per equazione s=f(x, y, zt), Bollettino della Unione Matematica Italiana, 13 (1958), 308-318.
  • [3] P, Hartman and A. Wintner, On hyperbolic partial differential equations, Amer. J. Math. 74 (1952), 832-864.
  • [4] E. K. Haviland, A note on the convergence of the successive approximationsto the solution of an ordinary differential equation, Amer. J. Math. 54 (1932), 632-634.
  • [5] E. Kamke, Differentialgleichungen reeler Funktionen, Leipzig (1930).
  • [6] J. Kisynski, Sur existence et unicite des solutions des problemes classiques relatifs Vequation s=F(x, y, z, p, q,), Annales Mariae Curie-Sklodowska, 11 (1957), 73-112.
  • [7] O. Perron, Eine hinreichende Bedingung furdie Unitatder Lsungvon Differen- tialgleichungen erster Ordnnug, Mathematische Zeitschrift, 28 (1928), 216-219.
  • [8] B. Viswanatham,The general uniqueness theorem and successiveapproximations, J.Indian Math. Soc, 16 (1952), 69-74.