Pacific Journal of Mathematics

Unions of cell pairs in $E^{3}$.

P. H. Doyle

Article information

Source
Pacific J. Math., Volume 10, Number 2 (1960), 521-524.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103038407

Mathematical Reviews number (MathSciNet)
MR0126837

Zentralblatt MATH identifier
0094.36102

Subjects
Primary: 54.78

Citation

Doyle, P. H. Unions of cell pairs in $E^{3}$. Pacific J. Math. 10 (1960), no. 2, 521--524. https://projecteuclid.org/euclid.pjm/1103038407


Export citation

References

  • [1] R. H. Bing, Locally tame sets are tame, Ann.of Math. 59 (1954), 145-158.
  • [2] R. H. Bing, Approximatingsurfaces with polyhedral ones, Ann. of Math. 65 (1957), 456-483.
  • [3] P. H. Doyle, Tame triods in Es, Proc. Amer. Math. Soc. 10 (1959), 656-658.
  • [4] R. H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. 49 (1948), 979-990.
  • [5] O. G. Harrold, H. C. Griffith, and E. E. Posey, A Characterization of tame curves in three-space, Trans. Amer. Math. Soc. 79 (1955), 12-34.
  • [6] E. E. Moise, Affine structures in 3-manifolds,V.The triangulationtheorem and Hauptvermutung,Ann. of Math. 56 (1952), 96-114.
  • [7] E. E. Moise, Afflne structures in 3-manifolds, VII.Disk which are pierced by intervals, Ann. of Math. 58 (1953), 403-408.
  • [8] E. E. Moise, Affline structures in 3-manifolds, VIII. Invariance of the knot-types; Local tame imbedding, Ann. of Math. 59 (1954), 159-170.