Pacific Journal of Mathematics

The Paley-Wiener theorem in metric linear spaces.

Maynard G. Arsove

Article information

Source
Pacific J. Math., Volume 10, Number 2 (1960), 365-379.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103038399

Mathematical Reviews number (MathSciNet)
MR0125429

Zentralblatt MATH identifier
0097.09301

Subjects
Primary: 46.01

Citation

Arsove, Maynard G. The Paley-Wiener theorem in metric linear spaces. Pacific J. Math. 10 (1960), no. 2, 365--379. https://projecteuclid.org/euclid.pjm/1103038399


Export citation

References

  • [1] R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, New York, 1934.
  • [2] R. P. Boas, Jr., Expansions of analytic functions, Trans. Amer. Math. Soc, 48 (1940), 467-487.
  • [3] Y. Y. Tseng, On generalized biorthogonal expansions in metric and unitary spaces, Proc. Nat. Acad. Sci. U.S.A., 28 (1942), 35-43. 9The theorem of Boas is enunciated in essentially this form by Evgrafov [17, p. 122] Theorem 2 of [9] states the result in a slightly restricted way by taking the limit as r -* R of the left-hand member of (6.2). The proof in [9] is, however, valid in the present case.
  • [4] H. Pollard, Completeness theorems of Paley-Wiener type, Ann. of Math. (2), 45 (1944), 738-739.
  • [5] B. Sz. Nagy, Expansion theorems of Paley-Wiener type, Duke Math. J., 14 (1947), 975-978.
  • [6] S. H. Hilding, Note on completeness theorems of Paley-Wiener type, Ann. of Math. (2), 49 (1948), 953-955.
  • [7] F. W. Schafke, Uber einige unendliche lineare Gleichungssysteme,Math. Nachr., 3 (1949), 40-58.
  • [8] F. W. Schafke, Das Kriterium von Paley und Wiener im Banachschen Raum, Math. Nachr., 3 (1949), 59-61.
  • [9] M. G. Arsove, The Pincherle basis problem and a theorem of Boas, Math. Scand., 5 (1957), 271-275.
  • [10] M. G. Arsove, Proper Pincherle bases in the space of entire functions, Quart. J. Math. (Oxford) (2), 9 (1958), 40-54.
  • [11] M. G. Arsove, Similar bases and isomorphisms in Frchet spaces, Math. Ann., 135(1958), 283-293.
  • [12] M. G. Arsove and R. E. Edwards, Generalized basesin topologicallinear spaces, Studia Math, (to appear).
  • [13] S. Banach, Theorie des operations linaires, Varsovie, 1932.
  • [14] N. Bourbaki, Espaces vectoriels topologiques (Ch. I, II), Paris, 1953.
  • [15] R. C. Buck, Expansion theorems for analytic functions, Conference on functions of a complex variable, University of Michigan (1953), 409-419.
  • [16] M. M. Day, Normed linear spaces, Berlin, 1958.
  • [17] M. A. Evgrafov, The method of approximatingsystems in the space of analytic func- tions and its applications to interpolation, Trudy MoskovskovoMat.Obshchestva,5 (1956), 89-201. (Russian).
  • [18] S. Karlin, Bases in a Banach space, Duke Math. J., 15 (1948), 971-985.
  • [19] D. Montgomery and L. Zippin, Topological transformationgroups, New York, 1955.
  • [20] S. Narumi, A theorem on the expansion of analytic functionsby infiniteseries, Thoku Math. J., 30 (1928), 441-444.
  • [21] W. F. Newns, On the representation of analytic functions by infinite series. Phil. Trans. Royal Soc. London (A), 245 (1953), 429-468.