Pacific Journal of Mathematics

Uniform neighborhood retracts.

J. R. Isbell

Article information

Source
Pacific J. Math., Volume 11, Number 2 (1961), 609-648.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103037336

Mathematical Reviews number (MathSciNet)
MR0141074

Zentralblatt MATH identifier
0109.15402

Subjects
Primary: 54.60
Secondary: 54.30

Citation

Isbell, J. R. Uniform neighborhood retracts. Pacific J. Math. 11 (1961), no. 2, 609--648. https://projecteuclid.org/euclid.pjm/1103037336


Export citation

References

  • [1] M. Atsuji, Uniform continuity of continuous functions of metric spaces, Pacific J. Math. 8 (1959), 11-16.
  • [2] K. Borsuk, Sur un espace localement contractible qui n'est pas un retracte absolu de voisinage, Fund. Math. 35 (1948), 175-580.
  • [3] H. Corson and J. Isbell, Some properties of strong uniformities, Quart. J. Math. (2) 11 (1960), 17-33.
  • [4] M. Day, Normed Linear Spaces, Berlin, 1958.
  • [5] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-368.
  • [6] J. Dugundji, Absolute neighborhood retracts and local connectedness in arbitrarymetric spaces, Comp. Math. 13 (1958), 229-246.
  • [7] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton, 1952.
  • [8] S. Ginsburg and J. Isbell, Some operators on uniform spaces, Trans. Amer. Math. Soc. 93 (1959), 145-168.
  • [9] A. Gleason, Projective topological spaces, 111. J. Math. 2 (1958), 482-489.
  • [10] J. DeGroot, Groups represented by homeomorphism groups, I, Math. Ann. 138 (1959), 80-102.
  • [11] H. Hahn, Uber halbstetige und unstetige Funktionen,Sitzungsb. Akad. Wien 126 (1917), 91-110.
  • [12] O. Hanner, Some theorems on absolute neighborhood retracts, Ark. Mat. 1 (1951), 389- 408.
  • [13] M. Henriksen and J. Isbell, Some properties of compactifications, Duke Math. J. 25 (1958), 83-105.
  • [14] J. Isbell, Euclidean and weak uniformities,Pacific J. Math. 8 (1958), 67-86.
  • [15] J. Isbell, On finite-dimensional uniform spaces, Pacific J. Math. 9 (1959), 107-121.
  • [16] J. Isbell, Embeddings of inverse limits, Ann. of Math. (2) 7O (1959), 73-84.
  • [17] J. Isbell, Adequate subcategories, 111. J. Math. 4 (1960), 541-552.
  • [18] M. Katetov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85-
  • [19] J. Kelley, General Topology, New York, 1955.
  • [20] C. Kuratowski, Quelques problems concernant les espaces metriques non-separablesr Fund. Math. 25 (1935), 534-545.
  • [21] S. Mardesic, On covering dimension and inverse limits~~of compact spaces, 111. J. Math. 4 (1960), 278-291.
  • [22] E. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837- 842.
  • [23] E. Michael, Some extension theorems for continuous function, Pacific J. Math. 3 (1953), 789-806.
  • [24] K. Morita, Star-finite coverings and the star-finiteness property, Math. Japan. 1 (1948), 60-68.
  • [25] K. Morita, On the simple extension of a space with respect to a uniformity,I. Proc. Japan Acad. 27 (1951), 65-72.
  • [26] T. Shirota, A class of topological spaces, Osaka Math. J. 4 (1952), 23-40.
  • [27] Yu. Smirnov, On the dimension of proximity spaces, Mat. Sb. 38 (1956), 283-302.
  • [28] A. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977- 982.
  • [29] M. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375-481.