Pacific Journal of Mathematics

Convergence of inverse systems.

Jack Segal

Article information

Source
Pacific J. Math., Volume 12, Number 1 (1962), 371-374.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103036734

Mathematical Reviews number (MathSciNet)
MR0157358

Zentralblatt MATH identifier
0106.36702

Subjects
Primary: 54.25

Citation

Segal, Jack. Convergence of inverse systems. Pacific J. Math. 12 (1962), no. 1, 371--374. https://projecteuclid.org/euclid.pjm/1103036734


Export citation

References

  • [1] C. E. Capel, Inverse limit spaces, Duke Math. J., 26 (1954), 233-245,
  • [2] M. K. Fort and J. Segal, Local connectedness of inverse limit spaces, Duke Math. J., 28 (1961), 253-260.
  • [3] P. A. White, Regular convergence, Bull. Amer. Math. Soc, 60 (1954), 431-443. 4^ 2<few types of regular convergence. Duke Math. J., 12 (1945), 305-315.
  • [5] G. T. Whyburn, Semi-locally connected sets, Amer. J. of Math., 61 (1939), 733-749.
  • [6] G. T. Whyburn,Analytic Topology,Amer. Math. Soc. Colloquium Publications, Vol. 28, 1942.

Corrections

  • Correction to: Convergence of inverse systems. corr Zbl 125.11401 PJM 14, 1505 (1964).