Pacific Journal of Mathematics

A theorem on families of acyclic sets and its applications.

A. Kosiński

Article information

Source
Pacific J. Math., Volume 12, Number 1 (1962), 317-325.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103036727

Mathematical Reviews number (MathSciNet)
MR0141117

Zentralblatt MATH identifier
0198.28201

Subjects
Primary: 55.60

Citation

Kosiński, A. A theorem on families of acyclic sets and its applications. Pacific J. Math. 12 (1962), no. 1, 317--325. https://projecteuclid.org/euclid.pjm/1103036727


Export citation

References

  • [1] G. Aumann, On a topological characterization of compact convex point sets, Ann. of Math., 37 (1936), 443.
  • [2] E. G. Begle, The Vietoris mapping theorem for bicompact spaces, Ann. of Math., 51 (1950), 534.
  • [3] K. Borsuk and A. Kosinski, Families of acyclic compacta in Euclidean n-space, Bull. Acad. Pol. Sci. Cl. Ill, 3 (1955), 293.
  • [4] K. Borsuk and A. Kosinski, On connections between the homology properties of a set and of itsfrontier, Bull. Acad. Pol. Sci. Cl. Ill, 4 (1956), 331.
  • [5] G. Hirsch, Un theoreme sur les transformations des spheres, Acad. Roy. Belgique, Bull. Cl. Sci., 32 (1946), 394.
  • [6] J. Schreier, ber Schnitte Konvexen Fldchen, Bull. Int. Ac. Pol. Serie A (1933), 155.
  • [7] S. K. Stein, Continuous choice function and convexity, Fund. Math., 45 (1958), 182.
  • [8] H. Steinhaus, Quelques applications des principes topologiques a la geometrie des corps <convexes, Fund. Math., 41 (1955), 284.