Pacific Journal of Mathematics

Closed extensions of the Laplace operator determined by a general class of boundary conditions, for unbounded regions.

Robert S. Freeman

Article information

Source
Pacific J. Math., Volume 12, Number 1 (1962), 121-135.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103036711

Mathematical Reviews number (MathSciNet)
MR0158091

Zentralblatt MATH identifier
0109.07102

Subjects
Primary: 31.20

Citation

Freeman, Robert S. Closed extensions of the Laplace operator determined by a general class of boundary conditions, for unbounded regions. Pacific J. Math. 12 (1962), no. 1, 121--135. https://projecteuclid.org/euclid.pjm/1103036711


Export citation

References

  • [1] W. G. Bade and R. S. Freeman, Closed extensions of the Laplace operator determined by a general class of boundary conditions.(Submitted for publication.)
  • [2] F. E. Browder, On the regularityproperties of elliptic differentialequations, Comm. Pure Appl. Math., 9 (1956), 351-361.
  • [4] J. \y. Calkin, Abstract symmetric boundary conditions, Trans. Amer. Math. Soc, 45 (1939), 369-442.
  • [5] G. Ehrling, On a type of eigenvalue problem for certain elliptic differentialoperators, Math, Scand., 2 (1954), 267-285.
  • [6] K. O. Friedrichs, Spektraltheoriehalbbeschrankter Operatoren und Anwendungauf
  • [7] Lars Hrmander, On the theory of general partial differential operators, Acta Math., 94 (1955), 161-248.
  • [8] P. D. Lax and A. N. Milgram, Parabolic equations, contributions to the theory of partial differential equations, Ann. Math. Studies, No.33, Princeton University Press(1954), 167-190.
  • [9] K. R. Lucas. Submanifolds of dimension n -- l in En with normals satisfying a Lip- schitz condition, Studies in eigenvalue problems, Technical Report 18, University of Kansas, 1957.
  • [10] L. Nirenberg, Estimates and existence of solutions of elliptic equations, Comm. Pure Appl. Math., 9 (1956), 509-530.
  • [11] E. T. Poulsen, Some results on degenerate linear elliptic differential operators of the second order, Technical Report No. 25, Contract Nonr-222 (37) University of California, Berkeley, 1958.