Pacific Journal of Mathematics

Lattice-ordered rings and function rings.

Melvin Henriksen and J. R. Isbell

Article information

Source
Pacific J. Math., Volume 12, Number 2 (1962), 533-565.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103036492

Mathematical Reviews number (MathSciNet)
MR0153709

Zentralblatt MATH identifier
0111.04302

Subjects
Primary: 16.20
Secondary: 06.85

Citation

Henriksen, Melvin; Isbell, J. R. Lattice-ordered rings and function rings. Pacific J. Math. 12 (1962), no. 2, 533--565. https://projecteuclid.org/euclid.pjm/1103036492


Export citation

References

  • [8] , The proof above is similar to Gillman's argument. Since subspaces of locally compact Hausdorff spaces are completely regular we have 6*2. COROLLARY.Themodular maximal l-ideals of an f-ring form a completely regular space in the hull-kernel topology.
  • [1] E. Artin, Uber die Zerlegung definiter Functionen in Quadrate, Abh. Math. Sem. Univ. Hamburg, 5 (1926), 100-115.
  • [2] G. Birkhoff, On the structure of abstract algebras, Proc. Camb, Phil. Soc, 31 (1935), 433-454.
  • [3] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloquium Publications, 25 (rev. ed.), 1948.
  • [4] G. Birkhoff, and R. S. Pierce, Lattice-ordered rings, Anais Acad. Bras., 28 (1956), 41-69.
  • [5] P. Erdos, L. Gillman, and M. Henriksen, An isomorphism theorem for real-closedfields, Ann. of Math., 61 (1955), 542-554.
  • [6] J. Farkas, Theorie der einfachen Ungleichungen, J. Reine Angew. Math., 124 (1902), 1-27.
  • [7] A. L. Foster Maximal idempotent sets in a ring with unit, Duke Math. J., 13 (1946), 247-258.
  • [8] L. Gillman, Rings with Hausdorff structure space, Fund. Math., 45 (1957), 1-16.
  • [9] D. G. Johnson, A structure theory for a class of lattice-ordered rings, Acta Math., 104 (1960), 163-215.
  • [10] H. W. Kuhn and A. W. Tucker, eds., LinearInequalitiesand RelatedSystems, Princeton, 1957.
  • [11] D. R. Morrison, Bi-regular rings and the ideal lattice isomorphisms, Proc. Amer. Math. Soc, 6 (1955), 46-49.
  • [12] R. S. Pierce, Radicals in function rings, Duke Math. J., 23 (1956), 253-261.
  • [13] A. Tarski, A decision method for elementary algebra and geometry, RAND Report R- 109, Santa Monica, 1948.
  • [14] B. L. Van der Waerden, Moderne Algebra, Berlin, 1940.