Pacific Journal of Mathematics

Continuously invertible spaces.

P. H. Doyle and J. G. Hocking

Article information

Source
Pacific J. Math., Volume 12, Number 2 (1962), 499-503.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103036488

Mathematical Reviews number (MathSciNet)
MR0146803

Zentralblatt MATH identifier
0113.16702

Subjects
Primary: 54.78

Citation

Doyle, P. H.; Hocking, J. G. Continuously invertible spaces. Pacific J. Math. 12 (1962), no. 2, 499--503. https://projecteuclid.org/euclid.pjm/1103036488


Export citation

References

  • [1] R. H. Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Can. J. Math., 12 (1960), 209-230.
  • [2] W. Dancer, Symmetrical cut sets, Fund. Math., 27 (1936), 123-135.
  • [3] P. H. Doyle, and J. G. Hocking, A characterization of Euclidean n-space, Mich. Math. J., 7 (1960), 199-200.
  • [4] P. H. Doyle, Invertible spaces, Amer. Math. Monthly 68 (1961), 959-965.
  • [5] S. Eilenberg, Topologie du plan, Fund. Math., 26 (1936), 61-112.
  • [6] L. Whyburn, Rotation groups about a set of fixed points, Fund. Math., 28 (1937), 124-130.
  • [7] R. L. Wilder, The strong symmetrical cut set of closedEuclidean n-space, Fund. Math., 27 (1936), 136-139.