Pacific Journal of Mathematics

Direct decompositions with finite dimensional factors.

Peter Crawley

Article information

Source
Pacific J. Math., Volume 12, Number 2 (1962), 457-468.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103036485

Mathematical Reviews number (MathSciNet)
MR0148579

Zentralblatt MATH identifier
0113.01903

Subjects
Primary: 06.40

Citation

Crawley, Peter. Direct decompositions with finite dimensional factors. Pacific J. Math. 12 (1962), no. 2, 457--468. https://projecteuclid.org/euclid.pjm/1103036485


Export citation

References

  • [1] R. Baer, Direc decompositions, Trans. Amer. Math. Soc, 62 (1947), 62-98.
  • [2] R. Baer, Direct decompositions into infinitely many summands, Trans. Amer. Math. Soc, 64 (1948), 519-551.
  • [3] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications, rev. ed., vol.
  • [4] R. Dilworth and P. Crawley, Decomposition theory for lattices without chain conditions, Trans. Amer. Math. Soc, 96 (1960), 1-22.
  • [5] M. Hall, The theory of groups, Macmillan, 1959.
  • [6] B. Jnsson and A. Tarski, A generalization of Weddeburn's theorem, Bull. Amer. Math- Soc. Abstract 51-9-150 (1945).
  • [7] I. Kaplansky, Protective modules, Ann. of Math., (2) 68 (1958), 372-377.
  • [8] A. Kurosh, Isomorphisms of direct products I, Bull. Acd. Sci. URSS, 7 (1943) 185-202.
  • [9] A. Kurosh, Isomorphisms of direct products II, Bull. Acd. Sci. URSS, 1O (1946), 47-72.
  • [10] O. Ore, On the foundation of abstract algebra II, Ann. of Math., 37 (1936), 265-292.
  • [11] H. Zassenhaus, Representation theory (mimeographed notes), Calif. Institute of Tech- nology, 1958-59, pp. 49-60.