Pacific Journal of Mathematics

Regular elements in an ordered semigroup.

Tôru Saitô

Article information

Source
Pacific J. Math., Volume 13, Number 1 (1963), 263-295.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103035973

Mathematical Reviews number (MathSciNet)
MR0152598

Zentralblatt MATH identifier
0113.25202

Subjects
Primary: 06.70
Secondary: 20.00

Citation

Saitô, Tôru. Regular elements in an ordered semigroup. Pacific J. Math. 13 (1963), no. 1, 263--295. https://projecteuclid.org/euclid.pjm/1103035973


Export citation

References

  • [1] N. G. Alimov, On ordered semigroups,Izvestiya Akad. Nauk SSSR., 14 (1950), 569-576 (Russian).
  • [2] A. H. Clifford, Totally ordered commutative semigroups, Bull. Amer. Math. Soc, 64 (1958), 305-316.
  • [3] J. A. Green, On the structure of semigroups, Ann. of Math., 54 (1951), 163-172.
  • [4] E. S. Lyapin, Semigroups, I960 (Russian).
  • [5] D. D. Miller and A. H. Clifford, Regular D classes in semigroups, Trans. Amer. Math. Soc, 82 (1956), 270-280.
  • [6] W. D. Munn and R. Penrose, A note on inverse semigroups, Proc. Cambridge Phil. Soc, 51 (1955), 396-399.
  • [7] G. B. Preston, Inverse semigrougs, J. London Math. Soc, 29 (1954), 396-403.
  • [8] G. B. Preston,J. London Math. Soc, 29 (1954), 411-419.
  • [9] T. Sait, Note on semigroups having no minimal ideals, Bull. Tokyo Gakugei Univ., 9 (1958), 13-16.
  • [10] T. Sait, Ordered idempotent semigroups, J. Math. Soc. Japan, 14 (1962), 150-169.
  • [11] M. G. Thierrin, Sur une condition necetsaire et suffisante pour qu'unsemigroups soit un groupe, C. R. Acad. Paris, 232 (1951), 376-378.