Pacific Journal of Mathematics

On harmonic functions of four variables with rational $p_{4}$-associates.

R. P. Gilbert

Article information

Source
Pacific J. Math., Volume 13, Number 1 (1963), 79-96.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103035958

Mathematical Reviews number (MathSciNet)
MR0159010

Zentralblatt MATH identifier
0119.08802

Subjects
Primary: 31.11
Secondary: 32.02

Citation

Gilbert, R. P. On harmonic functions of four variables with rational $p_{4}$-associates. Pacific J. Math. 13 (1963), no. 1, 79--96. https://projecteuclid.org/euclid.pjm/1103035958


Export citation

References

  • [1] S. Bergman, Zur Theorie der ein-und mehrwertigenharnonischen Funktionendes drei dimensional Raumes, Math, Zeit. 24 (1926), 641-669.
  • [2] S. Bergman, Sur Theorie der algebraischen Potential Funktionen des drei dimensional Raumes, Math. Ann. 99 (1928), 629-659, and 101, (1929), 534-538.
  • [3] S. Bergman, Residue theorems of harmonic functionsof three variables, Bull. Amer Math. Soc, 49, 2, (1943), 163-174.
  • [4] S. Bergman, Integral Operators in the Theory of Linear Partial DifferentialEquations, rgebn. Math. U. Grenzgeb. 23 Springer, Berlin, (1960). '5. A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, HigherTranscendental Functions II, McGraw-Hill, New York, (1953).
  • [6] R. Gilbert, Singularitiesof three-dimensional harmonic functions, Pacific J. Math., 10 (1961), 1243-1255.
  • [7] R. Gilbert, Singularitiesof solutions to the wave equation in three dimensions,J. Reine U. Angew. Math. 205 (1960), 75-81.
  • [8] J. Hadamard, Theorem sur les series entieres, Acta Math. 22 (1898), 55-64.
  • [9] E. Kreyszig, On regular and singular harmonic functions of three variables, Arch. Rat. Mech. Anal 4 (1960), 352-370.
  • [10] E. Kreyszig, Kanonische Integraloperatoren zur Erzeugung Harmonischer Funktionen von vier VeraenderLichen., Archiv der Mathematik (to appear).
  • [11] M. Z. v. Krzywoblocki, Bergman's Linear Integral Operator Method in the Theory of Compressible Fluid Flow, Springer-Verlag, Wein, (1960).
  • [12] Z. Nehari, On the singularitiesof Legendre expansions, J. Rat. Mech. Anal 5, (1956), 987-992.
  • [13] W. F. Osgood, Lehrbuch der Funktionen theorie, zweiter Band, erste Lieferung, Mathematishen Wissenschaften, XX, Teubner, Berlin, (1924).
  • [14] E. Picard and G. Simart, Theorie des Functions Algebriques de deux Variables In- dependantes, Tome I, Gauthier-Villars et Fils, Paris (1897).