Pacific Journal of Mathematics

Minimum problems of Plateau type in the Bergman metric space.

Kyong T. Hahn

Article information

Source
Pacific J. Math., Volume 14, Number 3 (1964), 943-955.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103033989

Mathematical Reviews number (MathSciNet)
MR0169149

Zentralblatt MATH identifier
0147.07204

Subjects
Primary: 53.04
Secondary: 32.35

Citation

Hahn, Kyong T. Minimum problems of Plateau type in the Bergman metric space. Pacific J. Math. 14 (1964), no. 3, 943--955. https://projecteuclid.org/euclid.pjm/1103033989


Export citation

References

  • [1] S. Bergman, ber die Kernfunktioneines Bereiches und ihr Verhalten am Rande, J. Reine Angew. Math., 169 (1933), 1-42, and 172 (1934),89-128.
  • [2] S. Bergman, Sur quelques proprietes des transformationspar un couple de fonctions de deux variables complexes, Rend. Delia R. Accad. Naz. Del Lincei, 19 (ser. 6) (1934), 474-478.
  • [3] S. Bergman, Zur Theorie von Pseudokonformen Abbildungen, Recueil Math., nouv., 1 (43), (1936), 76-96.
  • [4] S. Bergman, Sur les functions orthogonales de plusieurs variables complexes, Mem.des Sciences Math., 106 (1947).
  • [5] S. Bergman, Sur la fonction-noyau d'un domaine et ses applications dans la theorie des transformationspseudo-conformes, Mem. des Sciences Math., 108 (1948). '6., The kernel function and conformal mapping, Math. Surveys 5, Amer. Math. Soc, New York, 1950.
  • [7] H. J. Bremermann, Holomorphic continuation of the kernel function and the Bergman metric in several complex variables, in Lectures on functions of a complex variable ed. by W. Kaplan, Univ. of Michigan Press, 1955. -8. H. Busemann, and M. Mayer, On the foundations of calculus of variations, Trans. Amer. Math. Soc, 49 (1941), 173-198. '9. B. Epstein, The kernel-function and conformal invariants, J. Math, and Mech., 7 <1958), 925-936.
  • [10] D. Hubert, ber das Dirichletsche Princip, Jahr. Dtsch. Math.-Verein., 8 (1900), 184-188.
  • [11] S. Kobayashi, Geometry of Bounded Domains, Trans. Amer. Math. Soc, 92 (1959), :267-290.
  • [12] C. B. Morrey Jr., Quasi-convexity and the lower semi-continuity of multiple inte- grals, Pacific J. Math., 2, (1952), 25-53.
  • [13] C. B. Morrey Jr., The parametric variational problem for double integrals, Communications -on Pure and Applied Math., 14 (1961),569-575.
  • [14] K. Reinhardt, ber Abbildungen durch analytische Funktionen zweier Verander- Xicher, Math. Ann., 83 (1921),211-255.
  • [15] W. Rinow, Die Innere Geometrie der Metrischen R'ume, Die Grundlehren der Math. Wissenschaften 105 (1961).
  • [16] J. M. Stark, On distortion in pseudo conformal mappings, Pacific J. Math., 6 (1956), 565-582.
  • [17] J. M. Stark, Minimum problems in the theory of pseudo-conformaltransformations
  • [18] K. Zarankiewicz, ber ein numerisches Verfahren zur konformenAbbildung zwei* fach zusammenhangenderGebiede, Zeits. f. ang. Math. u. Mech. 14 (1934), 97-104.