Pacific Journal of Mathematics

Another characterization of the $n$-sphere and related results.

R. F. Dickman, L. R. Rubin, and P. M. Swingle

Article information

Source
Pacific J. Math., Volume 14, Number 3 (1964), 871-878.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103033983

Mathematical Reviews number (MathSciNet)
MR0170331

Zentralblatt MATH identifier
0135.41801

Subjects
Primary: 54.78

Citation

Dickman, R. F.; Rubin, L. R.; Swingle, P. M. Another characterization of the $n$-sphere and related results. Pacific J. Math. 14 (1964), no. 3, 871--878. https://projecteuclid.org/euclid.pjm/1103033983


Export citation

References

  • [1] J. J. Andrews and M. L. Curtis, n-Space modulo an arc, Annals of Math., 75 (1962), 1-7.
  • [2] R. H. Bing, The cartesian product of certain nonmanifold and a line is Ei,Annals of Math., 70 (1959), 399-412.
  • [3] R. H. Bing, A decomposition of Es into points and tame arcs such that the decomposition space is topologically different from E3, Annals of Math., 65 (1957), 484-500.
  • [4] R. H. Bing, The cartesian product of a certain nonmanifold and a line is E4,Bull. Amer. Math. Soc, 64 (1958), 82-84.
  • [5] R. F. Dickman, L. R. Rubin and P. M. Swingle, Characterization of n-spheres by an excluded middle membrane principle, Mich. Math. Jour., 11 (1964), 53-59.
  • [6] R. F. Dickman, Irreducible continua and generalization of hereditarily unicoherent continua
  • [7] P. H. Doyle and J. G. Hocking, A characterization of euclidean n-space, Mich. Math. Jour., 7 (1960), 199-200.
  • [8] P. H. Doyle and J. G. Hocking, Invertible spaces, Amer. Math. Monthly 68 (1961), 959-965.
  • [9] W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press (1948).
  • [10] R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloquium Publi- cations 13 (1962).
  • [11] R. L. Wilder, Topology of Manifolds,Amer. Math. Soc. Colloquium Publications 32 (1948). MIAMI, FLORIDA