Pacific Journal of Mathematics

The essential spectrum of a class of ordinary differential operators.

E. Balslev and T. W. Gamelin

Article information

Source
Pacific J. Math., Volume 14, Number 3 (1964), 755-776.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103033977

Mathematical Reviews number (MathSciNet)
MR0171179

Zentralblatt MATH identifier
0188.21102

Subjects
Primary: 47.10
Secondary: 34.30

Citation

Balslev, E.; Gamelin, T. W. The essential spectrum of a class of ordinary differential operators. Pacific J. Math. 14 (1964), no. 3, 755--776. https://projecteuclid.org/euclid.pjm/1103033977


Export citation

References

  • [1] F. Atkinson, Normal solvability of linear equations in normed spaces, Mat. Sb. 28 (1951), 3-14.
  • [2] E. Balslev, Perturbation of ordinary differential operators, to appear, Math. Scand.
  • [3] E. Balslev, Perturbation of differentialoperators, Ph. D. thesis (1963), University of California, Berkeley, Calif.
  • [4] F. E. Browder, On the spectral theory of elliptic differentialoperators I, Math., Ann., 142 (1961), 22-130.
  • [5] Dunford and Schwartz, Linear Operators, Part I, Interscience Press, 1958.
  • [6] I. C. Gokhberg and M. G. Krein, Fundamental theorems on deficiency numbers, root numbers and indices of linear operators, Uspekhi Mat. Nauk, 12 (1957), 43-118, (Am. Math. Soc. Translations, Series 2, vol. 13).
  • [7] Hardy, Littlewood and Polya, Inequalities, Cambridge, 1952.
  • [8] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. d'Analyse Math., 6 (1958), 261-322.
  • [9] G. C. Rota, Extension theory of differentialoperators, Communs. Pure App. Math. 11 (1958), 23-65.
  • [10] G. C. Rota, On the spectra of singular boundary value problems, J. Math, and Mech., 10 (1961), 83-90.
  • [11] M. S. Birman, On the spectrum of singular boundary value problems, Mat. Sbornik T. 55 (2) 97 (1961), 125-174.