Pacific Journal of Mathematics

The Borel space of von Neumann algebras on a separable Hilbert space.

Edward G. Effros

Article information

Source
Pacific J. Math., Volume 15, Number 4 (1965), 1153-1164.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102995273

Mathematical Reviews number (MathSciNet)
MR0185456

Zentralblatt MATH identifier
0135.36102

Subjects
Primary: 46.65

Citation

Effros, Edward G. The Borel space of von Neumann algebras on a separable Hilbert space. Pacific J. Math. 15 (1965), no. 4, 1153--1164. https://projecteuclid.org/euclid.pjm/1102995273


Export citation

References

  • [1] N. Bourbaki, Espaces vectoriels topologiques, Act. Sci. Ind., no. 1189, Hermann, (1953).
  • [2] J. Dixmier, Les algebres d'operateurs dans espace hilbertien, Gauthier-Villars, Paris, 1957.
  • [3] E. Effros, Transformationgroups and C*-algebras,to appear.
  • [4] E. Effros, Convergence of closed subsets in a topological space, to appear.
  • [5] J. A. Ernest, A decomposition theorem for unitaryrepresentations of locally compact groups, Trans. Amer. Math. Soc. 104 (1962), 252-277.
  • [6] G.W. Mackey, Induced representations of locally compact groups II, Ann. of Math. 58 (1953), 193-221.
  • [7] G.W. Mackey, The theory of group representations (notes by Fell and Lowdenslager), Univ. of Chicago, Lecture Notes, 1955.
  • [8] G.W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165.
  • [9] J. von Neumann, On rings of operators.Reduction theory. Ann. of Math. 5O (1949), 401-485.
  • [10] R. Schatten, A theory of cross spaces, Ann. of Math. Studies, no. 26, Princeton, 1959.
  • [11] J. Schwartz, Type II factors in a central decomposition, Comm. Pure Appl. Math. 16 (1963), 247-252.
  • [12] E. Spanier, Quasi-topologies, Duke Math. J. 30 (1963), 1-14.