Pacific Journal of Mathematics

A characterization, existence proof and dimension bounds for the kernel of a game.

M. Maschler and B. Peleg

Article information

Source
Pacific J. Math., Volume 18, Number 2 (1966), 289-328.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102994269

Mathematical Reviews number (MathSciNet)
MR0205699

Zentralblatt MATH identifier
0144.43403

Subjects
Primary: 90.70

Citation

Maschler, M.; Peleg, B. A characterization, existence proof and dimension bounds for the kernel of a game. Pacific J. Math. 18 (1966), no. 2, 289--328. https://projecteuclid.org/euclid.pjm/1102994269


Export citation

References

  • [1] R. J. Aumann and M. Maschler, The bargaining set for cooperative games, Ad- vances in Game Theory, M. Dresher, L. S. Shapley and A. W. Tucker, eds., Annals of Mathematics Studies, No.52, Princeton University Press, Princeton, 1964, 443-476.
  • [2] R. J. Aumann, B. Peleg and P. Rabinowitz, A method for computing the kernel of n-person games, Mathematics of Computation, 19 (1965), 531-551.
  • [3] M. Davis and M. Maschler, Existence of stable payoff configurations for cooperative games, Bull. Amer. Math. Soc. 69 (1963), 106-108. A detailed paper with the same title will appear in Studies in Mathematical Economics, Essays in Honor of Oskar Morgenstern, M. Shubik, ed. 4 fThe kernel of a cooperative game, (to appear in Naval Research Logistics Quarterly.)
  • [5] D. Gale, The Theory of linear economic models, McGraw-Hill Book Company, New York, 1960.
  • [6] J. R. Isbell, A class of simple games, Duke Math. J. 25 (1958), 423-439.
  • [7] B. Peleg, The kernel of constant-sum simple games with homogeneous weights, (to appear in Illinois J. Math).
  • [8] B. Peleg, The kernel of m-quota games, Canadian J. Math. 17 (1965), 239-244.
  • [9] B. Peleg,Existence theorem for the bargaining set ^\^>, Bull. Amer. Math. Soc. 69 (1963), 109-110. A detailed paper with the same title will appear in Studies in Mathematical Economics, Essays in Honor of O. Morgenstern, M. Shubik, ed. 26See Remark 11.4.
  • [10] L. S. Shapley, Simple games; an outline of the descriptive theory, Behavioral Science 7 (1962), 59-66. 11.1A value for n-person games, Contributions to the Theory of Games, Vol. II, Annals of Mathematics Studies No. 28, H. W. Kuhn and A. W. Tucker, eds., Princeton University Press, Princeton 1953, 307-317.
  • [12] L. S. Shapley and M. Shubik, The core of an economy with nonconvex preferences, The RAND Corporation, Santa Monica, California, RM-3518-PR, Feb. 1963.
  • [13] J. Von Neumann and 0. Morgenstern, Theory of games and economic behavior, Princeton University press, 1944.