Pacific Journal of Mathematics

Metrizability in normal Moore spaces.

D. Reginald Traylor

Article information

Source
Pacific J. Math., Volume 19, Number 1 (1966), 175-181.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102993963

Mathematical Reviews number (MathSciNet)
MR0199841

Zentralblatt MATH identifier
0145.19504

Subjects
Primary: 54.38

Citation

Traylor, D. Reginald. Metrizability in normal Moore spaces. Pacific J. Math. 19 (1966), no. 1, 175--181. https://projecteuclid.org/euclid.pjm/1102993963


Export citation

References

  • [1] R. H. Bing, Metrization of topological space, Canad. J. Math. 3 (1951), 175-186.
  • [2] Ben Fitzpatrick and D. R. Traylor, Two theorems on metrizability of Moore spaces (to appear in the Pacific J. Math.)
  • [3] R. L. Heath, Separability and **-compactness, Notices of Amer. Math. Soc, Vol.
  • [4] F. B. Jones, Concerning normal and completely normal spaces, Bull. Amer. Math. Soc. 43 (1937), 671-677.
  • [5] R. L. Moore, Foundations of point set theory Amer. Math. Soc. Colloquium Pub. No. 13, Providence, 1962.
  • [6] R. L. Moore, A set of axioms for plane analysis situs, Fund. Math. 25 (1935), 13-28.
  • [7] J. M. Worrell, Concerning upper semi-continuous collections of mutually exclusive closed and compact point sets, Notices of Amer. Math. Soc, Vol. 9, No. 3, Abstract 590-44.
  • [8] J. N., Younglove, Concerning dense metric subspaces of certain nonmetric spaces, Fund. Math. 48 (1959), 15-25.