Pacific Journal of Mathematics

On the degeneracy of the Kepler problem.

Victor A. Dulock and Harold V. McIntosh

Article information

Source
Pacific J. Math., Volume 19, Number 1 (1966), 39-55.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102993954

Mathematical Reviews number (MathSciNet)
MR0198724

Zentralblatt MATH identifier
0156.44503

Subjects
Primary: 70.22

Citation

Dulock, Victor A.; McIntosh, Harold V. On the degeneracy of the Kepler problem. Pacific J. Math. 19 (1966), no. 1, 39--55. https://projecteuclid.org/euclid.pjm/1102993954


Export citation

References

  • [1] A. P. Alliluev, On the relations between accidental degeneracy and hidden symmetry of a system, Soviet Physics JETP 6 (1958), 156-159. (Journal Experimental and Theoretical Physics (USSR) 33 (1957), 200-203.)
  • [2] V. Bargmann, Zur Theoriedes Wasserstoffatom, Zeitschrift fur Physik 99 (1936), 576-582.
  • [3] L. C. Biedenharn, Remarks on the relativistic Kepler problem, Physical Review 126 (1962), 845-651.
  • [4] L. C. Biedenharn and N. V. V. J. Swamy, Remarks on the relativistic Kepler problem, II Approximate Dirac-Coulomb Hamiltonianprossessing two vectorinvariants, Physical Review 133 (1964), B 1353-B 1360.
  • [5] M. Born, The Mechanics of the Atom, Frederick Ungar Pub. Co., New York, 1960.
  • [6] Yu. N. Demkov, The definition of the symmetry group of a quantum system. The
  • [7] V. A. Dulock and H. V. Mclntosh, Degeneracyof cyclotron motion, J. Math. Physics 7 (1966).
  • [8] V. A. Dulock and H. V. Mclntosh, On the degeneracy of the two dimensional har- monic oscillator, Amer. J. Physics 33 (1965), 109-118.
  • [9] V. Fock, Zur Theorie des Wasserstoffatoms, Zeitschrift fur Physick 98 (1935), 145-154.
  • [10] W. Furry, Private communication.
  • [11] C. S. Gardner, Adiabatic invariants of periodic classicalsystems, Physical Review 115 (1959), 791-794.
  • [12] F. Goded, Transformations of the Schroedinger equation with discrete energy spectrum, II Nuovo Cimento 26 (1962), 1346-1353.
  • [13] E. L. Hill, Seminar on the Theory of Quantum Mechanics, (unpublished), Univer- sity of Minnesota, 1954.
  • [14] L. Hulthen, Uber die quantenmechanischeHerleitung der Balmerterme, Zeitschrift fur Physik, 86 (1933), 21-23.
  • [15] J. M. Jauch and E. L. Hill, On the problem of degeneracy in quantum mechanics, Physical Review 57 (1940), 641-645.
  • [16] O. Laporte and G. Y. Rainich, Stereographic parameters and pseudo-minimal hypersurf aces, Trans. Amer. Math. Soc. 39 (1936), 154-182.
  • [17] W. Lenz, Uberdas Bewgungsvergriff und die Quantenzustdnd der gestorten Kepler- bewegung, Zeitschrift fur Physik 24 (1924), 197-207.
  • [18] R. Loudon, One-dimensional hydrogen atom, Amer. J. Physics 27 (1959), 649-655.
  • [19] W. Magnus and F. Oberthettinger, Formulas and Theorems for the Special Functions of Mathematical Physics, Chelsea Pub. Co., New York, 1949.
  • [20] M. A. Melvin and N. V. V. J. Swamy, Evaluation of certain physically interesting integrals and hypergeometric sums, Journal of Mathematics and Physics 36 (1957), 157-163.
  • [21] W. Pauli, Uber das Wasserstoffspektrum von Standpunktder neuen Quanten- mechanike, Zeitschrift fur Physik 36 (1926), 336-363.
  • [22] P. J. Redmond, Generalization of the Runge-Lenz vector in the presence of an electric field, Physical Review 133 (1964), B 1352-B1353.
  • [23] A. W. Saenz, On Integrals of the Motion of the Runge Type in Classical and Quantum Mchanics, Ph. D. Thesis, University of Michigan, 1949.
  • [24] E. T. Whittaker, Analytical Dynamics, Cambridge University Press, 1961.
  • [25] A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Univer- sity Press, 1947.