Pacific Journal of Mathematics

Complete distributivity in lattice-ordered groups.

Richard D. Byrd

Article information

Source
Pacific J. Math., Volume 20, Number 3 (1967), 423-432.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102992694

Mathematical Reviews number (MathSciNet)
MR0207866

Zentralblatt MATH identifier
0158.03303

Subjects
Primary: 06.75
Secondary: 20.00

Citation

Byrd, Richard D. Complete distributivity in lattice-ordered groups. Pacific J. Math. 20 (1967), no. 3, 423--432. https://projecteuclid.org/euclid.pjm/1102992694


Export citation

References

  • [1] S. J. Bernau, Unique representation of Archimedean lattice groups and normal Archimedean lattice rings, Proc. London Math. Soc. 15 (1965), 599-631.
  • [2] G. Birkhoff, Lattice Theory, rev. ed., Amer. Math. Soc. Colloquim Pub. 25, 1948.
  • [3] P. Conrad, The lattice of all convex 1-subgroups of a lattice-ordered group, Czech. Math. J. 15 (1965), 101-123.
  • [4] P. Conrad, The relationship between the radical of a lattice-ordered group and complete distributivity,Pacific J. Math. 14 (1964), 494-499.
  • [5] L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, 1963.
  • [6] L. Fuchs, Riesz Groups, (to appear).
  • [7] C. Holland, The lattice-ordered group of automorphisms of an ordered set, Michigan Math. J. 10 (1963), 399-408.
  • [8] J. T. Lloyd, Lattice-ordered groups and o-permutation groups, Tulane Dissertation, 1964.
  • [9] J. T. Lloyd, Representations of lattice-ordered groups having a basis, Pacific J. Math. 15 (1965), 1313-1317.
  • [10] F. Sik, Sous-groupes simples et ideaux simples des groupes reticules, C. R. Acad. Sc. Paris 261 (1965), 2791-2793.
  • [11] F. Sik, Tiber Subdirekte Summen geordneter Gruppen, Czech. Math. J. 10 (1960), 400-424.
  • [12] E. C. Weinberg, Completely distributivelattice-ordered groups, Pacific J. Math. 12 (1962), 1131-1137.