Pacific Journal of Mathematics

Decompositions of $E^{3}$ which yield $E^{3}$.

Ralph J. Bean

Article information

Source
Pacific J. Math., Volume 20, Number 3 (1967), 411-413.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102992692

Mathematical Reviews number (MathSciNet)
MR0206926

Zentralblatt MATH identifier
0152.21301

Subjects
Primary: 54.78

Citation

Bean, Ralph J. Decompositions of $E^{3}$ which yield $E^{3}$. Pacific J. Math. 20 (1967), no. 3, 411--413. https://projecteuclid.org/euclid.pjm/1102992692


Export citation

References

  • [1] R. H. Bing, Topology of S-manfolds and related topics, Prentice-Hall, Inc., New York.
  • [2] R. H. Bing, Upper semicontinuous decompositions of E3, Ann. of Math., 65 (1957), 363-374.
  • [3] J. Hempel, A surface in S3 is tame if it can be deformed into each complementary domain, Trans. Amer. Math. Soc. I l l (1964), 273-287.