Pacific Journal of Mathematics

Order-preserving functions: Applications to majorization and order statistics.

A. W. Marshall, D. W. Walkup, and R. J.-B. Wets

Article information

Source
Pacific J. Math., Volume 23, Number 3 (1967), 569-584.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102991733

Mathematical Reviews number (MathSciNet)
MR0219677

Zentralblatt MATH identifier
0153.38502

Subjects
Primary: 26.50
Secondary: 15.00

Citation

Marshall, A. W.; Walkup, D. W.; Wets, R. J.-B. Order-preserving functions: Applications to majorization and order statistics. Pacific J. Math. 23 (1967), no. 3, 569--584. https://projecteuclid.org/euclid.pjm/1102991733


Export citation

References

  • [1] P. S. Aleksandrov, Combinatorial Topology, Graylock Press, Rochester, New York, 1956.
  • [2] M. Balinski, An algorithm for finding all vertices of convex polyhedral sets, J. Soc. Indust. Appl. Math. 9 (1961), 72-88.
  • [3] R. Barlow and F. Proschan, Inequalities for linear combinations of order statistics from restricted families, Ann. Math. Statist. 37 (1966), 1574-1592.
  • [4] E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin, 1961.
  • [5] Z. W. Birnbaum, J. D. Esary and A. W. Marshall, A stochastic characterization of wear-out for components and systems, Ann. Math. Statist. 37 (1966), 816-825.
  • [6] R. C. Buck, Advanced Calculus, McGraw-Hill, New York, 1956.
  • [7] K. Fan, Maximumproperties and inequalities for the eigenvalues of completely continuous operators, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 760-766.
  • [8] D. Gale, Convex polyhedral cones and linear inequalities, Activity Analysis of Production and Allocation, T. C. Koopmans, ed., John Wiley, New York, 1951, 287-297.
  • [9] M. Gerstenhaber, Theory of convex polyhedral cones, Activity Analysis of Production and Allocation, T. C. Koopmans, ed., John Wiley, New York, 1951, 298-316.
  • [10] G. Hardy, J. Littlewood and G. Plya, Inequalities, second edition, Cambridge University press, Cambridge, 1952.
  • [11] A. Horn, On the singular values of a product of completely continuous operators, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 374-375.
  • [12] W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton, 1948.
  • [13] V. Klee, Extremalstructure of convex sets, Archiv der Mathematik 8 (1957), 234-240.
  • [14] C. Loewner, Advanced Matrix Theory, Mimeographed notes, Stanford University, 1957.
  • [15] R. McKinney, Positive basesfor linear spaces, Trans. Amer. Math. Soc. 103(1962), 131-148.
  • [16] A. W. Marshall and I. Olkin, Norms and inequalities for condition numbers? Pacific J. Math. 15 (1965), 241-247.
  • [17] A. W. Marshall, I. Olkin and F. Proschan, Monotonicity of ratios of means and other applications of majorization, Inequalities: Proceeding of a Sympsium, 0. Shisha, ed., Academic Press, New York, 1967, 177-190.
  • [18] A. W. Marshall and F. Proschan, An inequality for convex functionsinvolving majorization, J. Math. Anal. Appl. 12 (1965), 87-90.
  • [19] A. Ostrowski, Sur quelques applications des functions convexes et concaves au sens de I. Schur, J. Math. Pure Appl. 31 (1952), 253-292.
  • [20] F. Proschan, Peakedness of distributionsof convex combinations, Ann. Math. Statist. 36 (1965), 1703-1706.
  • [21] H. J. Ryser,Matrices of zero and ones, Bull. Amer. Math. Soc. 66 (1960), 442-464.
  • [22] I. Schur, ber eine Klasse von Mittelbildungen mit Anwendungen auf die Deter- minantentheorie, Sitzber. Berl. Math. Ges. 22 (1923), 9-20.
  • [23] R. Wets and C. Witzgall, Towards an algebraic Characterizationof Convex Polyhedral Cones, Boeing document Dl-82-0525, Boeing Scientific Research Laboratories, Seattle, Washington, April, 1966.
  • [24] H. Weyl, Inequalities between the two kinds of eigenvalues of lineartransformation, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 408-411.