Pacific Journal of Mathematics

Integral equivalence of vectors over local modular lattices.

John S. Hsia

Article information

Source
Pacific J. Math., Volume 23, Number 3 (1967), 527-542.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102991729

Mathematical Reviews number (MathSciNet)
MR0218381

Zentralblatt MATH identifier
0167.32303

Subjects
Primary: 15.70

Citation

Hsia, John S. Integral equivalence of vectors over local modular lattices. Pacific J. Math. 23 (1967), no. 3, 527--542. https://projecteuclid.org/euclid.pjm/1102991729


Export citation

References

  • [1] J. S. Hsia, On IntegralWitt's Theorem over Dyadic Local Fields, M. I. T. Ph. D. Thesis 1966.
  • [2] J. S. Hsia, Integral Equivalence for Vectors over Depleted Modular Lattices on Dyadic Local Fields, to appear in Amer. J. Math.
  • [3] D. G. James, Integral invariants for vectors over local Fields, Pacific J. Math. 15 (1965), 905-916.
  • [4] M. Knebusch, Assoziierte Vektoren in MaximalenGittern LokalerQuadratischer Raume, Math. Z. 89 (1965), 213-223.
  • [5] O. T. O'Meara, Integral equivalence of quadratic forms in ramified local fields, Amer. J. Math. 79 (1957), 157-186.
  • [6] O. T. O'Meara, Introduction to Quadratic Forms, Grundlehren der Mathematischen Wis- senschaften, Springer-Verlag, Berlin, 1963.
  • [7] C. R. Riehm, On the integral representations of quadratic forms over local fields, Amer. J. Math. 86 (1964), 25-62.
  • [8] S. Rosenzweg, An Analogy of Witt's Theorem for Modules over the Ring of p- adic Integers, M. I. T. Ph. D. Thesis 1958.
  • [9] A. Trojan, The integral extension of isometries of quadratic forms over local fields, Canad. J. Math. 18 (1966), 920-942.
  • [10] C. T. C. Wall, On the orthogonal groups of unimodulor quadratic forms, Math. Ann. 147 (1962), 328-338.

See also

  • II : John S. Hsia. Integral equivalence of vectors over local modular lattices. II. Pacific Journal of Mathematics volume 31, issue 1, (1969), pp. 47-59.