Pacific Journal of Mathematics

Reflection laws of systems of second order elliptic differential equations in two independent variables with constant coefficients.

James M. Sloss

Article information

Source
Pacific J. Math., Volume 24, Number 3 (1968), 541-575.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102986513

Mathematical Reviews number (MathSciNet)
MR0226194

Zentralblatt MATH identifier
0157.18203

Subjects
Primary: 35.46

Citation

Sloss, James M. Reflection laws of systems of second order elliptic differential equations in two independent variables with constant coefficients. Pacific J. Math. 24 (1968), no. 3, 541--575. https://projecteuclid.org/euclid.pjm/1102986513


Export citation

References

  • [1] R. D. Brown, Reflection laws of fourth order elliptic differential equations in two independent variables, J. Math. Mech. 13 (1964).
  • [2] V. Filipenko, On the reflection of harmonic functions and of solutions of the wave equation, Pacific J. Math. 14 (1964).
  • [3] P. Garabedian, Partial DifferentialEquations, Johh Wiley and Sons, Ihc, New York 1964.
  • [4] P. Garabedian,Analyticityand reflection of plane elliptic systems, Comm. Pure Appl. Math. 14 (1961).
  • [5] J. Leray, Calcul, par reflexions, des functions M-harmoniques dans une bande plane "veriflant aux bords M conditions differentielles,a coefficients constants, Archiwum Mechaniki Stosowaj (5) 16 (1964).
  • [6] H. Lewy, On the reflection laws of second order differential equations in two inde- pendent variables, Bull. Amer. Math Soc. 65 (1959).
  • [7] H. Lewy, On the extension of harmonic functions in three variables, J. Math. Mech. 14 (1965).
  • [8] J. M. Sloss, Reflection of biharmonic functions across analyticb oundary conditions with examples, Pacific J. Math. 13 (1963).