Pacific Journal of Mathematics

Integrals which are convex functionals.

R. T. Rockafellar

Article information

Source
Pacific J. Math., Volume 24, Number 3 (1968), 525-539.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102986512

Mathematical Reviews number (MathSciNet)
MR0236689

Zentralblatt MATH identifier
0159.43804

Subjects
Primary: 46.35

Citation

Rockafellar, R. T. Integrals which are convex functionals. Pacific J. Math. 24 (1968), no. 3, 525--539. https://projecteuclid.org/euclid.pjm/1102986512


Export citation

References

  • [1] A. Br^ndsted, Conjugate convex functionsin topological vector spaces, Mat.-fys. Medd. Dansk. Vid. Selsk. 34 (1964).
  • [2] W. Fenchel, On conjugate convex functions,Canad. J. Math. 1 (1949), 73-77.
  • [3] W. Fenchel, Convex cones, sets and functions, lecture notes, Princeton University, 1953.
  • [4] P. Halmos, Measure Theory, van Nostrand, Princeton, 1950.
  • [5] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex Functionsand Orlicz Spaces, Noordhoff, Groningen, 1961.
  • [6] J.-J. Moreau, Fonctions convexes en dualite, Seminaire de Mathematiques de la Faculte des Sciences de Montpellier, no. 1, 1962.
  • [7] J.-J. Moreau, Sur la fonction polaire d'une fonction semi-continue superiurement,C. R. Acad. Sci 258 (1964), 1128-1130.
  • [8] J.-J. Moreau, Les liaisons unilaterals et le principe de Gauss, C. R. Acad. Sci. 256 (1963), 871-874.
  • [9] J.-J. Moreau, Proximite et dualite dans un espace hilbertien, Bull. Soc. Math. France 93 (1965), 273-299.
  • [10] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, New York, 1962.
  • [11] R. T. Rockafellar, Duality and stability in extemum problems involving convex functions,Pacific J. Math. 21 (1967), 167-187.
  • [12] R. T. Rockafellar, Level sets and continuityof conjugate convex functionsTrans. Amer. Math. Soc. 123 (1966), 46-63. 13#fConvex analysis, lecture notes, Princeton University, 1966.

See also

  • II : R. T. Rockafellar. Integrals which are convex functionals. II. Pacific Journal of Mathematics volume 39, issue 2, (1971), pp. 439-469.