Pacific Journal of Mathematics

An application of a Newton-like method to the Euler-Lagrange equation.

Richard A. Tapia

Article information

Source
Pacific J. Math., Volume 29, Number 1 (1969), 235-246.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102983159

Mathematical Reviews number (MathSciNet)
MR0250479

Zentralblatt MATH identifier
0176.41401

Subjects
Primary: 65.50

Citation

Tapia, Richard A. An application of a Newton-like method to the Euler-Lagrange equation. Pacific J. Math. 29 (1969), no. 1, 235--246. https://projecteuclid.org/euclid.pjm/1102983159


Export citation

References

  • [1] J. E. Dennis, Variations on Newton's method, Ph. D. Dissertation, University of Utah, 1966.
  • [2] I. M. Gelfand and S. V. Fomin, Calculus of variations, Prentice-Hall, Inc., New Jersey, 1963.
  • [3] W. L. Hart and T. S. Motzkin, A composite Newton-Raphson gradient method for the solution of systems of equations, Pacific J. Math. 6 (1956), 691-707.
  • [4] L. V. Kantorovich, Functional analysis and applied mathematics, translated from the Russian by C. D. Benster, National Bureau of Standards Report 1509, 1948.
  • [5] L. V. Kantorovich and G. P. Akilov, Functionalanalysis in normed spaces, Pergamon Press, New York, 1964.
  • [6] M. L. Stein, On methods of obtaining solutions of fixed end point problems in the calculus of variations, Ph. D. Dissertation, University of California, Los Angeles, 1950.
  • [7] R. A. Tapia, A generalizationof Newton'smethod with an application to the Euler-Lagrange equation, Ph. D. Dissertation, University of California, Los Angeles, 1967.
  • [8] A. E. Taylor, Introduction to functional analysis, John Wiley and Sons, Inc., New York, 1963.