Pacific Journal of Mathematics

Some aspects of Goldie's torsion theory.

Mark L. Teply

Article information

Source
Pacific J. Math., Volume 29, Number 2 (1969), 447-459.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102982982

Mathematical Reviews number (MathSciNet)
MR0244323

Zentralblatt MATH identifier
0174.06803

Subjects
Primary: 16.90

Citation

Teply, Mark L. Some aspects of Goldie's torsion theory. Pacific J. Math. 29 (1969), no. 2, 447--459. https://projecteuclid.org/euclid.pjm/1102982982


Export citation

References

  • [1] J. S. Alin, Thesis, University of Nebraska, 1967.
  • [2] J. S. Alin andS. E.Dickson, Goldie's torsion theory and its derived functor, Pacific J. Math. 24 (1968), p. 195-203,
  • [3] H. Cartan and S. Eilenberg, Homological algebra, Princeton, 1955.
  • [4] C. Curtis and I. Reiner, Representationtheory of finite groups and associate algebras, Wiley, 1962.
  • [5] S. E. Dickson, A torsion theory for Abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223-235.
  • [6] A. W. Goldie, Semiprime rings with maximum condition, J. London Math. Soc. (3) 10 (1960), 201-220.
  • [7] A. W. Goldie, Torsion-free modules and rings, J. of Algebra 1 (1964), 268-287.
  • [8] A. Hattori, A foundation of Torsion theory for modules over general rings, Nagoya Math. J. (1960), 147-170.
  • [9] J. P. Jans, Some aspects of torsion, Pacific J. Math. 15 (1965), 1249-1259.
  • [10] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloquium Publication #37, Second Edition, Providence, 1964.
  • [11] L. Levy, Torsion-free and divisible modules over non-integral domains, Canad. J. Math. 15 (1963), 132-151.
  • [12] F. L. Sandomierski, Semisimple maximal quotient rings, Trans. Amer. Math. Soc. 128 (1967), 112-120.
  • [13] M. Teply, Torsionfree injective modules Pacific J. Math. 28 (1969), 441-453.
  • [14] C. Walker and E. A. Walker, Quotient categories and rings of quotients (to appear).