Pacific Journal of Mathematics

On the rate of decay of solutions of parabolic differential equations.

J. K. Oddson

Article information

Source
Pacific J. Math., Volume 29, Number 2 (1969), 389-396.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102982977

Mathematical Reviews number (MathSciNet)
MR0244637

Zentralblatt MATH identifier
0176.09501

Subjects
Primary: 35.62

Citation

Oddson, J. K. On the rate of decay of solutions of parabolic differential equations. Pacific J. Math. 29 (1969), no. 2, 389--396. https://projecteuclid.org/euclid.pjm/1102982977


Export citation

References

  • [1] A. Erdelyi (editor), Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, New York, 1953.
  • [2] A. Friedman, Convergence of solutions of parabolic equations to a steady state, J. Math. Mech. 8 (1959), 57-76.
  • [3] A. Friedman,Asymptotic behavior of solutions of parabolic equations, J. Math. Mech, 8 (1959), 387-392.
  • [4] A. Friedman,Remarks on the maximum principlefor parabolic equations and its ap- plications, Pacific J. Math. 8 (1958), 201-211.
  • [5] A. Friedman, A strong maximum principle for weakly subparabolic functions,Pacific J. Math. 11 (1961), 175-184.
  • [6] A. Friedman, Partialdifferentialequations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.
  • [7] A. M. Iin, A. S. Kalashnikov, and 0. A. Oleinik, Second order linear equations of parabolic type, Uspekhi Math. Nauk SSSR 17 (1962), 3-146. (Translated in Russian Math. Surveys 17 (1962), 1-143.)
  • [8] K. Miller, Non-existence of an a priori bound, etc., Ann. Mat. Pura Appl. 73 (1966), 11-16.
  • [9] R. Narasimban, On the asymptotic stabilityof solutions of parabolicdifferential equations, J. Rat. Mech. Anal, 3 (1954), 303-319.
  • [10] L. Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure Appl. Math. 6 (1953), 167-177.
  • [11] J. K. Oddson, Phragmen-Lindelofand comparison theorems for ellipticequations with mixed boundary conditions, Arch. Rat. Mech. Anal. 26 (1967), 316-334.
  • [12] J. K. Oddson, On the boundary point principlefor ellipticequations in the plane, Bull. Amer. Math. Soc. (1967) (to appear.)
  • [13] J. K. Oddson, Some solutions of elliptic extremalequations in the plane, Le Mate matiche (Catania) (to appear.)
  • [14] M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967.
  • [15] C. Pucci, Un problema variazionale per i coefficienti di equazioni differenzialidi tipo ellittico, Ann. Scuola Norm. Sup. Pisa 16 (1962), 159-172.
  • [16] C. Pucci, Operatori ellittici estremanti, Ann. Mat. Pura Appl. 72 (1966), 141-170.
  • [17] C. Pucci, Proprieta di massimo e minimo delle soluzioni di equazioni a derivate parziali del secondo ordine di tipo ellittico e parabolico, Rend. Accad. Naz. Lincei (8) 23 (1957); 24 (1958).
  • [18] R. Vyborny, On propertiesof solutions of some boundary value problems for equations of parabolic type, Dokl. Akad. Nauk SSSR 117 (1957), 563-565.