Pacific Journal of Mathematics

Embedded eigenvalues and virtual poles.

James S. Howland

Article information

Source
Pacific J. Math., Volume 29, Number 3 (1969), 565-582.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102982796

Mathematical Reviews number (MathSciNet)
MR0254655

Zentralblatt MATH identifier
0183.14103

Subjects
Primary: 47.48

Citation

Howland, James S. Embedded eigenvalues and virtual poles. Pacific J. Math. 29 (1969), no. 3, 565--582. https://projecteuclid.org/euclid.pjm/1102982796


Export citation

References

  • [1] C. C. Conley, and P. A. Rejto. " Spectral concentration, II--General Theory," Perturbation theory and its applications in Quantum mechanics ed. C. H. Wilcox Wiley, 1966.
  • [2] C. L. Dolph, Recent developments in some non-self-adjoint problems of mathematical physics, Bull. Amer Math. Soc. 67 (1961), 1-69.
  • [3] M. A. Evgrofov, Analytic functions,Saunders, Philadelphia, 1966. (Translated from Russian, Moscow, 1965.)
  • [4] K. 0. Friedrichs, On the perturbation of continuous spectra, Comm. Pure Appl. Math. 1 (1948) 361-406.
  • [5] J. S. Howland, Perturbation of embedded eigenvalues by operators of finite rank, J. Math. Anal. Appl. 23 (1968), 575-584.
  • [6] T. Kato, On the convergence of the perturbation method, J. Fac. Sci. Univ. Tokyo. 6 (1951), 145-226.
  • [7] T. Kato,On finite dimensional perturbations of self-adjoint operators, J. Math. Soc. Japan 9 (1957),239-249.
  • [8] T. Kato, Perturbation theory for linear operators, Springer, 1966.
  • [9] S. T. Kuroda, Finite-dimensional perturbation and a representationofscattering operator, Pacific J. Math. 13 (1963), 1305-1318.
  • [10] J. B. McLeod, " Spectral concentration I--the one-dimensional Schroedinger opera- tor", Perturbationtheory and its applicationsin Quantum mechanics, ed. C. H. Wilcox, Wiley, 1966.