Pacific Journal of Mathematics

Martingales of vector valued set functions.

J. J. Uhl, Jr.

Article information

Source
Pacific J. Math., Volume 30, Number 2 (1969), 533-548.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102978509

Mathematical Reviews number (MathSciNet)
MR0248515

Zentralblatt MATH identifier
0206.48302

Subjects
Primary: 46.35
Secondary: 28.00

Citation

Uhl, J. J. Martingales of vector valued set functions. Pacific J. Math. 30 (1969), no. 2, 533--548. https://projecteuclid.org/euclid.pjm/1102978509


Export citation

References

  • [1] S. Bochner, Additive set functions on groups, Ann. of Math. 40 (1939), 769-799.
  • [2] S. Bochner, and R. S. Phillips, Additive set functions and vector lattices Ann. of Math. 42 (1941), 316-324.
  • [3] S. D. Chatterji, Martingales of Banach-valued random variables, Bull. Amer. Math. Soc. 66 (1960), 395-398.
  • [4] S. D. Chatterji, A note on the convergence of Banach-space valuedmartingales,Math. Annalen, 153 (1964), 142-149.
  • [5] J. L. Doob, Stochastic processes, John Wiley and Sons, New York, 1953.
  • [6] L. E. Dubins and L. J. Savage, How to gamble if you must, McGraw-Hill, New York, 1965.
  • [7] N. Dunford, and J. T. Schwartz, Linearoperators, Part I, Interscience, New York, 1958.
  • [8] P. Halmos, Measure theory, D. Van Nostrand Co., New York, 1950.
  • [9] L. L. Helms, Mean convergence of martingales, Trans. Amer. Math. Soc. 87 (1958), 439-446.
  • [10] M. A. Krasnoseskii, and Ya. B. Ruticki, Convex functionsand Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961.
  • [11] K. Krickeberg, and C. Pauc, Martingales et derivation, Bull. Soc. Math. France 91 (1965), 455-544.
  • [12] S. Leader, The theory of Z> spaces forfinitelyadditive set functions,Ann. of Math. 58 (1953), 528-543.
  • [13] M. Loeve, Probability theory, 3rd ed., D. Van Nostrand Co., Princeton, 1955.
  • [14] M. M. Rao, Conditional expectations and closedprojections, Pro. Acad. Amsterdam (A) S (1965), 100-112.
  • [15] F. S. Scalora, Abstract martingale convergence theorems, Pacific J. Math. 11 (1961), 347-374.
  • [16] J. J. Uhl, Jr., Orlicz spaces of finitely additive set functions,linear operators, and martingales, Bull. Amer. Math. Soc. 73 (1967), 116-119.
  • [17] J. J. Uhl,Orlicz spaces of finitely additive set functions, Studia Math. 29 (1967), 19-58.
  • [18] A. C. Zaanen, Linear analysis, North-Holland Pub. Co., Amsterdam, 1953.