Pacific Journal of Mathematics

A note on the outer Galois theory of rings.

H. F. Kreimer

Article information

Source
Pacific J. Math., Volume 31, Number 2 (1969), 417-432.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102977878

Mathematical Reviews number (MathSciNet)
MR0252449

Zentralblatt MATH identifier
0188.09303

Subjects
Primary: 16.70

Citation

Kreimer, H. F. A note on the outer Galois theory of rings. Pacific J. Math. 31 (1969), no. 2, 417--432. https://projecteuclid.org/euclid.pjm/1102977878


Export citation

References

  • [1] M. Auslander and 0. Goldman, Maximal orders, Trans. Amer. Math. Soc, 97 (1960), 1-24.
  • [2] M. Auslander and 0. Goldman,The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
  • [3] N. Bourbaki, Algebre commutative, Hermann, Paris, 1961.
  • [4] F. R. De Meyer, Some notes on the general Galois theory of rings, Osaka J. Math. 2(1965), 117-127.
  • [5] N. Jacobson, Lectures in abstract algebra, Vol. 3, Theory of fields and Galois theory, Van Nostrand, Princeton, N. J., 1964.
  • [6] F. Kasch, Projektive Frobenius-Erweiterung, S.-B. Heidelberger Akad. Wiss. Math- Natur. Kl. 1960/1961, 87-109.
  • [7] H. F. Kreimer, A Galois theory for non-commutativerings, Trans. Amer. Math. Soc. 127 (1967), 29-41.
  • [8] Y. Miyashita, Finite outer Galois theory of non-commutativerings, J. Fac. Sci. Hokkaido Univ. Ser. I, 19 (1966), 114-134.
  • [9] T. Nakayama, On a generalized notion of Galois extensions of a ring, Osaka J. Math. 15 (1963), 11-23.
  • [10] O. E. Villamayor and D. Zelinsky, Galois theory for rings withfinitelymany idempotents, Nagoya Math. J. 27 (1966), 721-731.