Pacific Journal of Mathematics

Lattices with no interval homomorphisms.

J. D. Lawson

Article information

Source
Pacific J. Math., Volume 32, Number 2 (1970), 459-465.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102977371

Mathematical Reviews number (MathSciNet)
MR0256363

Zentralblatt MATH identifier
0195.03304

Subjects
Primary: 54.56
Secondary: 06.00

Citation

Lawson, J. D. Lattices with no interval homomorphisms. Pacific J. Math. 32 (1970), no. 2, 459--465. https://projecteuclid.org/euclid.pjm/1102977371


Export citation

References

  • [1] L. W. Anderson, On the distributivityand simple connectivity of plane topological lattices, Trans. Amer. Math. Soc. 91 (1959), 102-112.
  • [2] L. W. Anderson, The existence of continuous lattice homomorphisms, J. London Math. Soc. 37 (1962), 60-62.
  • [3] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquim Publications, 3rd ed., vol XXV, Amer. Math. Soc, Providence, R. I., 1967.
  • [4] J. T. Borrego, Continuity of the operation of a semilattice, Notices Amer. Math. Soc. 16 (1969), 171.
  • [5] D. R. Brown, Topological semilattices on the two cell, Pacific J. Math. 15 (1965), 35-46.
  • [6] D. R. Brown and M. Friedberg, A new notion of semicharacters, (to appear).
  • [7] E. B. Davies, The existence of characters on topological lattices, J. London Math. Soc. 43 (1968), 217-220.
  • [8] E. Dyer and A. S. Shields, Connectivity of topological lattices, Pacific J. Math. 9 (1959), 443-447.
  • [9] K. H. Hofmann and P. S. Mostert, Elements of compact semigroups, Charles E. Merill Books, Inc., Columbus, Ohio, 1966.
  • [10] J. D. Lawson, Vietoris mappingsand embeddings of topological semilattices, University of Tennessee Dissertation, 1967.
  • [11] J. D. Lawson, Topological semilattices with small semilattices, (to appear in J. London Math. Soc).
  • [12] D. P. Strauss, Topological lattices, Proc. London Math. Soc. 18 (1968), 217-230.