Pacific Journal of Mathematics

Operator-valued Feynman integrals of finite-dimensional functionals.

G. W. Johnson and D. L. Skoug

Article information

Source
Pacific J. Math., Volume 34, Number 2 (1970), 415-425.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102976436

Mathematical Reviews number (MathSciNet)
MR0268728

Zentralblatt MATH identifier
0201.46301

Subjects
Primary: 47.70
Secondary: 28.00

Citation

Johnson, G. W.; Skoug, D. L. Operator-valued Feynman integrals of finite-dimensional functionals. Pacific J. Math. 34 (1970), no. 2, 415--425. https://projecteuclid.org/euclid.pjm/1102976436


Export citation

References

  • [1] T. W. Anderson, An introduction to multivariatestatistical analysis, Wiley, New York, 1958.
  • [2] R. H. Cameron, The Ilstow and Feynman integrals, J. Anal. Math. 10 (1962/1963), 287-361.
  • [3] R. H. Cameron and D. A. Storvick, An operator valued function space integral and a related integral equation, J. Math, and Mech. 18 (1968), 517-52.
  • [4] R. H. Cameron and D. A. Storvick, An integral equation related to the Schroedinger equation with an applica- tion to integration in function space to appear in Bochner Memorial Volume.
  • [5] N. Dunford and J. Schwartz, Linearoperators, Part II, Interscience Publishers, New York and London, 1964.
  • [6] G. W. Johnson and D. L. Skoug, Operator-valued Feynman integrals of certain finite-dimensional functionals, Proc. Amer. Math. Soc. 24 (1970), 774-780.
  • [7] R. E. A. C. Paley, N. Wiener and A. Zygmund, Notes on random functions,Math. Zeit. 37 (1933), 647-68.
  • [8] H. G. Tucker, A graduate course in probability, Academic Press, New York and London, 1967.
  • [9] D. L. Skoug, Generalized Ilstow and Feynman integrals, Pacific J. Math. 26 (1968), 171-92.