Pacific Journal of Mathematics

A density which counts multiplicity.

Robert E. Dressler

Article information

Source
Pacific J. Math., Volume 34, Number 2 (1970), 371-378.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102976431

Mathematical Reviews number (MathSciNet)
MR0271057

Zentralblatt MATH identifier
0198.06801

Subjects
Primary: 10.50

Citation

Dressler, Robert E. A density which counts multiplicity. Pacific J. Math. 34 (1970), no. 2, 371--378. https://projecteuclid.org/euclid.pjm/1102976431


Export citation

References

  • [1] F. V. Atkinson and Lord Cherwell, The mean values of arithmeticalfunctions, Quart. J. Math., Oxford Series, 20 (1949), 65-79
  • [2] R. Ayoub, An Introduction to the analytic theory of numbers, American Mathe- matical Society, Providence, 1963.
  • [3] H. Davenport, Uber Numeri Abundantes, Preuss. Akad. Wiss. Sitzungsber 2629 (1933), 147-151.
  • [4] P. Erdos, On the normal number of prime factors of p--1 and some related pro- blems concerning Euler's -function, Quart. J. Math., Oxford Series, 6 (1935), 205-213.
  • [5] P. Erdos, Some remarks on Euler's-function and some related problems. Bull. Amer. Math. Soc. 51 (1945), 540-544.
  • [6] H. Halberstam and K. F. Roth, Sequences, Vol. I, Oxford Univ. Press, Oxford, 1966.
  • [7] G. H. Hardy and E. M. Wright,An introductionto the theory ofnumbers, Oxford Univ. Press, Oxford, fourth edition, 1960.
  • [8] M. Kac, Statistical independence in probability analysis and number theory, Carus Monograph, no. 12, The Mathematical Association of America, 1959.
  • [9] E. Landau, Vorlesungen Uber Zahlentheorie, Band 1, S. Hirzel, Leipzig, 1927.
  • [10] W. Le Veque, Topics in number theory, Vol. 1, Addison Wesley, Reading, 1956.
  • [11] I. Niven, The asymptotic density of sequences, Bull. Amer. Math. Soc. 57 (1951), 420-434.
  • [12] I. Niven and H. S. Zuckerman, An Introduction to the theory of numbers, John Wiley and Sons, New York, 1960.