Pacific Journal of Mathematics

Projecting onto cycles in smooth, reflexive Banach spaces.

H. B. Cohen and F. E. Sullivan

Article information

Source
Pacific J. Math., Volume 34, Number 2 (1970), 355-364.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102976429

Mathematical Reviews number (MathSciNet)
MR0267381

Zentralblatt MATH identifier
0198.17703

Subjects
Primary: 46.10

Citation

Cohen, H. B.; Sullivan, F. E. Projecting onto cycles in smooth, reflexive Banach spaces. Pacific J. Math. 34 (1970), no. 2, 355--364. https://projecteuclid.org/euclid.pjm/1102976429


Export citation

References

  • [1] W. G. Bade, On Boolean algebras of projections and algebras of operators, Trans. Amer. Math. Soc.80 (1955), 345-359.
  • [2] E. Bishop andR. R. Phelps, A proof that every Banach space is sub-reflexive, Bull. Amer. Math. Soc.67 (1961), 97-98
  • [3] J. A. Clarkson, Uniformly convex space, Trans. Amer. Math. Soc. 40 (1939),396- 414.
  • [4] F. J. Cunningham Jr., L-structure in Lspaces, Trans. Amer. Math. Soc. 95 (1960), 274-299.
  • [5] N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
  • [6] R. C. James, Orthogonality and linear functionalsin normed linear spaces, Trans. Amer. Math. Soc.61 (1947), 265-292.
  • [7] R. C. James, Characterizations of reflexivity, Studia Math. 23 (1964), 205-216.
  • [8] E. R. Lorch, On a calculus of operators in reflexive vector spaces, Trans. Amer. Math. Soc.45 (1939),223.
  • [9] M. M. Rao, Smoothness of Orlicz spaces, Koninkligke Nederlandse Akademic Von Wetenschappen 68 (1965), 672-690.
  • [10] F. E. Sullivan, A norm characterizationof Lv-spaces, Doctoral Dissertation, Uni- versity of Pittsburgh,1968.
  • [11] F. E. Sullivan, Norm characterization of real L^-spaces, Bull. Amer. Math. Soc. 74 (1968), 153-154.