Pacific Journal of Mathematics

Compact, distributive lattices of finite breadth.

Kirby A. Baker and Albert R. Stralka

Article information

Source
Pacific J. Math., Volume 34, Number 2 (1970), 311-320.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102976425

Mathematical Reviews number (MathSciNet)
MR0282895

Zentralblatt MATH identifier
0208.02604

Subjects
Primary: 06.65
Secondary: 20.00

Citation

Baker, Kirby A.; Stralka, Albert R. Compact, distributive lattices of finite breadth. Pacific J. Math. 34 (1970), no. 2, 311--320. https://projecteuclid.org/euclid.pjm/1102976425


Export citation

References

  • [1] L. W. Anderson, One dimensional topological lattices, Proc. Amer. Math. Soc. 10 (1959), 715-720.
  • [2] L. W. Anderson, The existence of continuous lattice homomorphisms, J. London Math. Soc. 37 (1962), 60-62.
  • [3] L. W. Anderson,On the breadth and co-dimension of a topological lattice, Pacific J. Math. (1969), 327-333.
  • [4] G. Birkhoff, Lattice theory, 3rd. ed., Amer. Math. Soc. Colloq. Publ. 25, Providence, 1967.
  • [5] H. Cohen, A cohomological definition of dimension for locally compact Hausdorff spaces, Duke Math. J. 21 (1954), 209-224.
  • [6] R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. 51 (1950), 161-166.
  • [7] E. Dyer and A. Shields, Connectivity of topological lattices, Pacific J. Math. 9 (1959)> 443-448.
  • [8] E. E. Floyd, Boolean algebras with pathological order topologies, Pacific J. Math. 5 (1955), 687-689.
  • [9] G. Gratzer, Universal algebra, Van Nostrand, Princeton, 1968.
  • [10] E. Hemingsen, Some theorems in dimension theory for normal Hausdorff spaces^ Duke Math. J. 13 (1946), 495-504.
  • [11] J. L. Kelley, General topology, van Nostrand, Princeton, 1955.
  • [12] J. D. Lawson, Lattices with no interval homomorphisms, Pacific J. Math. 32 (1970), 459-466. 13.9The relation of breadth and codimension in topological semilattices, IT (to appear)
  • [14] K. Morita, On the dimension of product spaces, Amer. J. Math. 75 (1953), 205-223.
  • [15] J. Nagata, Modern dimension theory, Interscience, New York, 1965.
  • [16] D. P. Strauss, Topological lattices, Proc. London Math. Soc. 18 (1968), 217-230.