Pacific Journal of Mathematics

Perfect subsets of definable sets of real numbers.

Richard Mansfield

Article information

Source
Pacific J. Math., Volume 35, Number 2 (1970), 451-457.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102971639

Mathematical Reviews number (MathSciNet)
MR0280380

Zentralblatt MATH identifier
0251.02060

Subjects
Primary: 04.40
Secondary: 02.00

Citation

Mansfield, Richard. Perfect subsets of definable sets of real numbers. Pacific J. Math. 35 (1970), no. 2, 451--457. https://projecteuclid.org/euclid.pjm/1102971639


Export citation

References

  • [1] P. R. Halmos, Lectures on Boolean Algebras, Van Nostrand, Princeton,New Jersey, 1963.
  • [2] J. Harrison, doctoral dissertation, Stanford University, Palo Alto, California, 1967.
  • [3] S. C. Kleene, Arithmeticalpredicates and function quantifiers,Trans. Amer. Math. Soc, 79 (1955), 312-340.
  • [4] C. Kuratowski, Ensembles projectifs et ensembles singuliers, Fund. Math. 35(1948), 131-140.
  • [5] C. Kuratowski,Topologie v. 1, Panstowe Wydawnictwo Naukowe, Warsaw, 1958.
  • [6] N. Lusin, Sur V'existencedfun ensemble non-denombrable qui est de premiere categorie sur tout ensemble par fait, Fund. Math. 2 (1921), 155.
  • [7] R. Mansfield, A Souslin operation for o, Israel J. Math, (to appear).
  • [8] R. Mansfield, The theory of ls e s> doctoral dissertation, Stanford University, 1969.
  • [9] G. Paris, doctoral dissertation, Manchester University, Manchester, England, 1969.
  • [10] J. B. Rosser, SimplifiedIndependence Proofs, Academic Press, New York, 1969.
  • [11] R. Salem, Algebraic Numbers and Fourier Analysis, Heath, Boston, 1963.
  • [12] D. Scott, Boolean valued models for set theory, Proc. Sympos. Pure Math., Vol.
  • [13] D. Scott, Measurable cardinals and constructible sets, Bull. Acad. Polon. Sci. Sir. Sci. Math. Astronom. Phys. 19 (1961), 521-524.
  • [14] J. R. Shoenield, MathematicalLogic, Addison-WesleyPub. Co., Menlo Park, California, 1967.
  • [15] J. R. Shoenield, The Problem of Predicativity, Essays on the Foundations of Mathematics, Magnes Press, Hebrew University, Jerusalem, 1961.
  • [16] R. M. Solovay, The Cardinality of l Sets, Foundations of Mathematics, Springer- Verlag, New York, 1968.
  • [17] R. M. Solovay, A non-constructible 3 set of integers, Trans. Amer. Math. Soc. 127 (1967), 50-75.
  • [18] R. M. Solovay, A model for set theory in which every set of reals is Lebesgue measur- able (to appear).