Pacific Journal of Mathematics

Generic splitting algebras for ${\rm Pic}$.

Gerald Garfinkel

Article information

Source
Pacific J. Math., Volume 35, Number 2 (1970), 369-380.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102971631

Mathematical Reviews number (MathSciNet)
MR0285520

Zentralblatt MATH identifier
0223.13015

Subjects
Primary: 13.90

Citation

Garfinkel, Gerald. Generic splitting algebras for ${\rm Pic}$. Pacific J. Math. 35 (1970), no. 2, 369--380. https://projecteuclid.org/euclid.pjm/1102971631


Export citation

References

  • [1] S. A. Amitsur, Generic splitting fields of central simple algebras, Ann. of Math. 62 (1955),8-43.
  • [2] H. Bass, Lectures in Algebraic K-theory, Tata Institute of Fundamental Research, Bombay, 1967.
  • [3] N. Bourbaki, Algebre Commutative, Chapter 1, Hermann, Paris,1961.
  • [4] H. Cartan andS. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton, 1956.
  • [5] S. Chase and A. Rosenberg, Galois theory and Galois cohomology of commutative rings, Amer. Math. Soc.Memoirs, No. 52, 1965.
  • [6] M. Deuring, Algebren (Zweite Auflage), Springer-Verlag, NewYork, 1968.
  • [7] T. Nagahara, A note on Galois theory of commutative rings, Proc. Amer. Math. Soc. 18 (1967), 334-340.
  • [8] P. Roquette, On the Galois cohomology of the projective linear group and its ap- plications to the construction of generic splitting fields of algebras, Math. Ann. 15O (1963), 411-439.
  • [9] A. Rosenberg and D. Zelinsky, Automorphismsof separable algebras, Pacific J. Math. 11 (1961), 1109-17.
  • [10] O. Zariski and P. Samuel, Commutative Algebra, Volume 1, D. Von Nostrand, Princeton, 1958.