Pacific Journal of Mathematics

The primary decomposition theory for modules.

Joe W. Fisher

Article information

Source
Pacific J. Math., Volume 35, Number 2 (1970), 359-367.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102971630

Mathematical Reviews number (MathSciNet)
MR0274501

Zentralblatt MATH identifier
0204.05802

Subjects
Primary: 16.40

Citation

Fisher, Joe W. The primary decomposition theory for modules. Pacific J. Math. 35 (1970), no. 2, 359--367. https://projecteuclid.org/euclid.pjm/1102971630


Export citation

References

  • [1] J. W. Fisher, Decomposition theories for modules, Trans. Amer. Math. Soc. 145 (1969), 241-269.
  • [2] A. W. Goldie, Rings with maximumcondition, Yale Univ. Lecture Notes, New- Haven, Conn., 1964.
  • [3] N. Jacobson, Structureof rings, Amer. Math. Soc. Colloq. Publ. Vol. 37, Amer. Math. Soc, Providence, R. I., 1956.
  • [4] L. Lesieur and R. Croisot, Extensionau cas non commutatifd'un theoreme de Krull et d'un lemme d}Artin-Rees,J. Reine Angew. Math. 204 (1960), 216-220.
  • [5] L. Lesieur and R. Croisot, Algebre noetherienne non-commutatif, Memor. Sci. Math., Paris, 1963.
  • [6] D. G. Northcott, Lessons on Rings, Modules, and Multiplicities,Cambridge Univ. Press, London, 1968.
  • [7] J. A. Riley, Axiomatic primary and tertiary decomposition theory, Trans. Amer. Math. Soc. 105 (1962), 177-201.
  • [8] O. Zariski and P. Samuel, CommutativeAlgebra, Vol. I, Van Nostrand, Princeton, N. J., 1958.