Pacific Journal of Mathematics

A criterion for $n$-convexity.

P. S. Bullen

Article information

Source
Pacific J. Math., Volume 36, Number 1 (1971), 81-98.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102971269

Mathematical Reviews number (MathSciNet)
MR0274681

Zentralblatt MATH identifier
0209.36501

Subjects
Primary: 26.52

Citation

Bullen, P. S. A criterion for $n$-convexity. Pacific J. Math. 36 (1971), no. 1, 81--98. https://projecteuclid.org/euclid.pjm/1102971269


Export citation

References

  • [1] L. S. Bosanquet, A property of Cesro-Perron integrals, Proc. Edinburgh Math. Soc. (2) 6 (1940), 160-165.
  • [2] P. S. Bullen, Construction of primitives of generalized derivatives with applications to trigonometric series, Canad. J. Math. 13 (1961), 48-58.
  • [3] J. C. Burkill, The Cesro-Perron scale of integration,Proc. London Math. Soc. (2) 39 (1935), 541-552.
  • [4] E. Corominas, Contribution a la theorie de la derivation d'ordre superieur,Bull. Soc. Math. France 81 (1953), 177-222.
  • [5] A. Denjoy, Sur Vintegration des coefficients dijferentielsd'ordre superieur, Fund. Math. 25 (1935), 273-326.
  • [6] A. Denjoy, Lecons sur le calcul des coefficients d'une serie trigonometrique,Paris, 1941.
  • [7] R. D. James, Generalized nh primitives,Trans. Amer. Math. Soc. 76 (1954), 149-176.
  • [8] R. D. James, Summable trigonometric series, Pacific J. Math. 6 (1956), 99-110.
  • [9] R. D. James and W. H. Gage, A generalized integral, Trans. Roy. Soc. Canad., (3) 40 (1946), 25-35.
  • [10] R. L. Jeffrey, Trigonometric Series, Toronto, 1956.
  • [11] C. Kassimatis, Functions which have generalized Riemannderivative,Cand. J. Math. 10 (1958), 413-420.
  • [12] J. Marcinkiewicz and A. Zygmund, On the differentiabilityof functionsand summabilityof trigonometric series, Fund. Math. 26 (1936), 1-43.
  • [13] E. J. McShane, Integration,Princeton, 1944.
  • [14] H. W. Oliver, The exact Peano derivative,Trans. Amer. Math. Soc. 76 (1954), 444-456.
  • [15] T. Popoviciu, Les functions convexes, Paris, 1944.
  • [16] F. Riesz, Sur certains systems singuliers d*equations integrates, Ann. Ec. Norm. (3) 28 (1911), 33-62.
  • [17] S. Saks, Theory of the Integral, Warsaw, 1937.
  • [18] W. L. C. Sargent, On sufficient conditions for a function integrable in the Cesaro- Perron sense to be monotonic, Quarterly J. Math. Oxford 12 (1941), 148-153.
  • [19] W. L. C. Sargent, On generalized derivatives and Cesaro-Denjoy integrals,Proc. London Math. Soc. (2) 52 (1951), 365-376.
  • [20] W. Sierpinski, Un lemma metrique, Fund. Math. 4 (1923), 201-203.
  • [21] Z. Zahorski, Ueber die Menge der Punkte in welchen die dbleitungunendlichist, Tohoku Math. J. 48 (1941), 321-330.
  • [22] A. Zygmund, Trigonometric Series, second edition, Cambridge, 1959.