Pacific Journal of Mathematics

A decomposition theorem for topological group extensions.

Arnold J. Insel

Article information

Source
Pacific J. Math., Volume 36, Number 2 (1971), 357-378.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102971074

Mathematical Reviews number (MathSciNet)
MR0280641

Zentralblatt MATH identifier
0211.34802

Subjects
Primary: 22.20

Citation

Insel, Arnold J. A decomposition theorem for topological group extensions. Pacific J. Math. 36 (1971), no. 2, 357--378. https://projecteuclid.org/euclid.pjm/1102971074


Export citation

References

  • [1] L. Auslander and C. C. Moore, Unitary representationsof solvable Lie groups. Memoirs Amer. Math. Soc. G2 Providence, 1966.
  • [2] C. Chevalley Lie Groups, Princeton University Press,. 1946.
  • [3] A. Gleason, Spaces with a compact Lie group of transformations,Proc. Amer. Math. Soc. 1 (1950), 35-43.
  • [4] G. Hochschild, Group extensions of Lie groups, Ann. of Math. (2) 54 (1951), 96- 109.
  • [5] S. Hu, Homotopy Theory, Academic Press, New York, 1959.
  • [6] G. W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165.
  • [7] G. W. Mackey, Les ensembles Boreliens et les extensions des groupes, J. Math. Pures Appl. 36 (1957), 171-178.
  • [8] S. MacLane, Homology Theory, Springer-Verlag, New York, 1967.
  • [9] D. Montgomery and L. Zippen, Topological TransformationGroups, Interscience, New York, 1955.
  • [10] C. C. Moore, Extensionsand low dimensional cohomologytheory of locally compact groups, I, Trans. Amer. Math. Soc. (1) 113 (1964), 40-63.
  • [11] J. P. Serre, Trivia-lite des espacesfibres.Applications,Comptes Rendus de L'Academie des Sciences Paris (10) 230 (1950), 916-918.