Pacific Journal of Mathematics

Spectral theory of monotone Hammerstein operators.

Charles V. Coffman

Article information

Source
Pacific J. Math., Volume 36, Number 2 (1971), 303-322.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102971068

Mathematical Reviews number (MathSciNet)
MR0281067

Zentralblatt MATH identifier
0212.46803

Subjects
Primary: 47.85
Secondary: 45.00

Citation

Coffman, Charles V. Spectral theory of monotone Hammerstein operators. Pacific J. Math. 36 (1971), no. 2, 303--322. https://projecteuclid.org/euclid.pjm/1102971068


Export citation

References

  • [1] F. E. Browder, Infinitedimensionalmanifoldsand nonlinerellipticeigenvalue problems, Ann. of Math. 82 (1965), 459-477.
  • [2] F. E. Browder, Nonlinear eigenvalue problems and Galerkin approximations,Bull. Amer. Math. Soc. 74 (1968), 651-656.
  • [3] E. S. Citlanadze, Existencetheorems forminimaximalpoints in Banach spaces and their applications, Trud. Mosk. Mat. Obshch. 2 (1952), 235-274 (Russian).
  • [4] C. V. Coffman, A minimum-maximumprinciple for a class of non-linearin- tegral equations, J. d'Analyse Mathematique 22 (1969), 391-419.
  • [5] C. V. Coffman,An existence theorem for a class of non-linearintegral equationswith applications to a nonlinear elliptic boundary value problem, J. Math. Mech. 18 (1968),. 411-420.
  • [6] C. V. Coffman, On a class of non-linear elliptic boundary value problems, J. Math. Mech. 19 (1969), 351-356.
  • [7] R. E. Edwards, FunctionalAnalysis,Holt Rinehart and Winston, Inc., New York, 1965.
  • [8] M. A. Krasnoseskii, Topological Methods in the Theory of NonlinearIntegral Equations,MacMillan, New York, 1964.
  • [9] M. A. Krasnoseskii and Ya. B. Rutickii, Convex Functionsand OrliczSpaces, Noordhoff, Groninger, 1961.
  • [10] N. Levinson, Positive eigenfunctionsforu + f(u) = 0, Arch. Rat. Mech. AnaL 11 (1962), 258-272.
  • [11] R. A. Moore and Z. Nehari, Nonoscillationtheorems fora class ofnonlinear differentialequations, Trans. Amer. Math. Soc. 93 (1959), 30-52.
  • [12] Z. Nehari, On a class of nonlinear second order differentialequations,Trans. Amer. Math. Soc. 95 (1960), 101-123.
  • [13] Z. Nehari, On a class of nonlinearintegral equations. Math. Zeit. 72 (1959), 175-183.
  • [14] R. S. Palais, Lusternik-Schnirelmantheory on Banach maniforlds,Topology 5 (1966), 115-132.
  • [15] S. I. Pohozaev, Eigenfunctions of the equation u + f(u) --0, Dokl. Akad. Nauk. SSSR 165 (1965), 36-39; Soviet Math. 5 (1965), 1408-1411.
  • [16] J. T. Schwartz, Generalizing the Luster nik-Schnirelmantheory of critical points, Comm. Pure App. Math. 17 (1964), 382-396.
  • [17] V. I. Sobolev, On a nonlinearintegral equation,Dokl. Akad. Nauk. SSSR 71 (1950), 831-834. (Russian).
  • [18] M. M. Vainberg,VariationalMethods forthe Studyof NonlinearOperators, Holden-Day, Inc., San Francisco, 1964.
  • [19] M. M. Vainberg, R. I. Kacurovskii, On the variational theory of nonlinear operators and equations, Dokl. Akad. Nauk. SSSR 129 (1959), 1199-1202. (Russian)